3 datasets found
  1. a

    Sonoma County Vegetation and Habitat Map (Vector Tiles - Full Labels)

    • hub.arcgis.com
    Updated Dec 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonoma County Ag + Open Space (2018). Sonoma County Vegetation and Habitat Map (Vector Tiles - Full Labels) [Dataset]. https://hub.arcgis.com/maps/856c5202d7b44b4cbff2b23ee43b1f5f
    Explore at:
    Dataset updated
    Dec 21, 2018
    Dataset authored and provided by
    Sonoma County Ag + Open Space
    Area covered
    Description

    This is a vector tile service with labels for the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. Labels appear at scales greater than 1:5,000 and show the full Latin name or vegetation group name. At scales smaller than 1:5,000 the abbreviated vegetation class name is displayed. This service is mean to be used in conjunction with the vector tile services of the veg map polygons (either the solid symbology service or the hollow symbology service). The key to map class abbreviations can be found here. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8) The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

  2. a

    Cobb County Parcel Viewer

    • geo-cobbcountyga.hub.arcgis.com
    Updated May 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cobb County, Georgia (2019). Cobb County Parcel Viewer [Dataset]. https://geo-cobbcountyga.hub.arcgis.com/app/e22d8c597b4e4762bcd2caa6127696e4
    Explore at:
    Dataset updated
    May 13, 2019
    Dataset authored and provided by
    Cobb County, Georgia
    Area covered
    Cobb County
    Description

    GIS Map view look up parcel information including owner, taxes, market value and more.Important Mailing Label Information:The "Mailing Labels" button is is copy of the Parcels Layer and is intended to be turned OFF on the map, and is there just for the "Public Notification" Widget. This widget obtains information on the pop-up of a selected layer to create "Mailing Labels." This said, this layer contains the Owners Mailing Address information. Below is Arcaded used to customize the pop-up:Made three custom Arcade Lines below: Proper($feature["OWNER_NAM1"]) + Proper($feature["OWNER_NAM2"])Proper($feature["OWNER_ADDR"])Proper($feature["OWNER_CITY"]) + ',' + $feature["OWNER_STAT"] + ',' + $feature["OWNER_ZIP"]Below is the custom pop-up:{expression/expr0}{expression/expr1}{expression/expr2}

  3. USA Protected Areas - Federal Fee Managers (Mature Support)

    • hub.arcgis.com
    Updated Apr 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). USA Protected Areas - Federal Fee Managers (Mature Support) [Dataset]. https://hub.arcgis.com/maps/esri::usa-protected-areas-federal-fee-managers-mature-support-2
    Explore at:
    Dataset updated
    Apr 20, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.

    The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.This layer displays federal fee managers from the USGS Protected Areas Database of the United States version 3.0. The layer includes fee simple parcels (where available) from authoritative data sources symbolized from the “Manager Name” field. This service does not include designations that often overlap state, private or other in-holdings. See the USA Protected Areas - Federal Management Agencies map for a combined view of fee ownership, designations, and easements.Dataset SummaryPhenomenon Mapped: Federal managers for lands in fee ownershipCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, 3 or 4GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sonoma County Ag + Open Space (2018). Sonoma County Vegetation and Habitat Map (Vector Tiles - Full Labels) [Dataset]. https://hub.arcgis.com/maps/856c5202d7b44b4cbff2b23ee43b1f5f

Sonoma County Vegetation and Habitat Map (Vector Tiles - Full Labels)

Explore at:
Dataset updated
Dec 21, 2018
Dataset authored and provided by
Sonoma County Ag + Open Space
Area covered
Description

This is a vector tile service with labels for the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. Labels appear at scales greater than 1:5,000 and show the full Latin name or vegetation group name. At scales smaller than 1:5,000 the abbreviated vegetation class name is displayed. This service is mean to be used in conjunction with the vector tile services of the veg map polygons (either the solid symbology service or the hollow symbology service). The key to map class abbreviations can be found here. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8) The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

Search
Clear search
Close search
Google apps
Main menu