Facebook
TwitterThis interactive map helps the citizens of Seabrook, TX find and locate their nearest early voting polling location. It was created using a list of address of known early voting polling locations along with a created buffer zones of 5, 10, 15, 20, 40, and 60 miles from City Hall in Seabrook to help visualize the distance from each polling site. It also gives a widget tool to help measure distances between points selected by the user, and also print if needed a map of a given location. Each polling site also has the information on where the polling room is for each site where it is applicable so users can know where to go before they arrive to the site.
Facebook
TwitterThis layer was deprecated on 12/31The layer will still be publicly available, but no longer update. Information and links on how to access the new updated feature service in ArcGIS Marketplace will be posted here soonSafeGraph is just a data company. That's all we do.Social Distancing MetricsDue to the COVID-19 pandemic, people are currently engaging in social distancing. In order to understand what is actually occurring at a census block group level, SafeGraph is offering a temporary Social Distancing Metrics product. This product is delivered daily (3 days delayed from actual).The data was generated using a panel of GPS pings from anonymous mobile devices. We determine the common nighttime location of each mobile device over a 6 week period to a Geohash-7 granularity (~153m x ~153m). For ease of reference, we call this common nighttime location, the device's "home". We then aggregate the devices by home census block group and provide the metrics set out below for each census block group.To preserve privacy, we apply differential privacy to all of the device count metrics other than the device_count.SchemaColumn NameDescriptionTypeExampleorigin_census_block_groupThe unique 12-digit FIPS code for the Census Block Group. Please note that some CBGs have leading zeros.String131000000000date_range_startStart time for measurement period in ISO 8601 format of YYYY-MM-DDTHH:mm:SS±hh:mm (local time with offset from GMT). The start time will be 12 a.m. of any day.String2020-03-01T00:00:00-06:00date_range_endEnd time for measurement period in ISO 8601 format of YYYY-MM-DDTHH:mm:SS±hh:mm (local time with offset from GMT). The end time will be the following 12 a.m.String2020-03-02T00:00:00-06:00device_countNumber of devices seen in our panel during the date range whose home is in this census_block_group. Home is defined as the common nighttime location for the device over a 6 week period where nighttime is 6 pm - 7 am. Note that we do not include any census_block_groups where the count <5.Integer100distance_traveled_from_homeMedian distance traveled from the geohash-7 of the home by the devices included in the device_count during the time period (excluding any distances of 0). We first find the median for each device and then find the median for all of the devices.Integer200completely_home_device_countOut of the device_count, the number of devices which did not leave the geohash-7 in which their home is located during the time period.Integer40median_home_dwell_timeMedian dwell time at home geohash-7 ("home") in minutes for all devices in the device_count during the time period. For each device, we summed the observed minutes at home across the day (whether or not these were contiguous) to get the total minutes for each device. Then we calculate the median of all these devices.Integer1200part_time_work_behavior_devicesOut of the device_count, the number of devices that spent one period of between 3 and 6 hours at one location other than their geohash-7 home during the period of 8 am - 6 pm in local time. This does not include any device that spent 6 or more hours at a location other than home.Integer10full_time_work_behavior_devicesOut of the device_count, the number of devices that spent greater than 6 hours at a location other than their home geohash-7 during the period of 8 am - 6 pm in local time.Integer0For data definitions and complete documentation visit SafeGraph Developer and Data Scientist Docs.For statistics on the dataset, see SafeGraph Summary Statistics.Data is available as a hosted Feature Service to easily integrate with all ESRI products in the ArcGIS ecosystem.Want More? Want this POI data for use outside of ArcGIS Online? Want POI data for Canada? Want POI building footprints (Geometry)?Want more detailed category information (Core Places)?Want phone numbers or operating hours (Core Places)?Want POI visitor insights & foot-traffic data (Places Patterns)?To see more, preview & download all SafeGraph Places, Patterns, & Geometry data from SafeGraph’s Data Bar.Or drop us a line! Your data needs are our data delights. Contact: support-esri@safegraph.comView Terms of Use
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Cape Verde. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This data set represents a series of 502 mixed-species bird flock compositions, and derived taxonomic, functional, and phylogenetic diversity indices, that were gathered along a gradient of forest fragment sizes (range = 10-173 ha) in the Colombian Western Andes. We sampled mixed-species flocks using transect surveys along 14 transects in 8 fragments and a continuous forest reference site in the same landscape and at the same elevation (~1900-2200 m.a.s.l.). We also used buffer analysis to quantify the proportion of forest cover and forest edge within 1 km of each transect, and calculated local vegetation density and complexity, as well as distance from edge, for each 100-meter transect segment (n = 70 segments). Flock composition data observed on a transect were used to calculate overall species richness and flock size as well as two indices of functional and phylogenetic diversity; we calculated the stadardized effect size (SES) of each measure to account for the correlation between these measures and species richness. We also provide the raw counts of each species for each flock composition. These data were used for the analyses in Jones and Robinson (2020).
Methods Study System and Sites
We conducted all fieldwork in subtropical humid forests located within the municipality of El Cairo, Valle del Cauca department in Colombia. The study region is part of the Serrania de los Paraguas in the Western Andes mountain range, a center of avian threatened species diversity and endemism within Colombia. The study landscape in this municipality consists of a patchwork of forest fragments embedded in a matrix of cattle pasture, regenerating scrub, and coffee farms. Within this landscape, we selected eight fragments representing a gradient in patch sizes (range 10 to 170 ha). Sites are in the same altitudinal belt (1900-2200 m.a.s.l.) and matrix type (cattle pasture) to control for effects of altitude and matrix type on flock size and composition. Within-patch disturbance is common in fragmented Andean forests in Colombia, particularly illegal selective logging, which in our landscape typically occurred as removal of select old-growth trees for lumber by landowners; logging histories varied considerably from historical to ongoing, and extensive to limited, both within and between patches. We established 500-meter transects through forest interior (n = 14 total transects) which were opportunistically placed on existing trails, at variable distances from the edge of the fragments. We further divided each transect into 100-meter segments to account for heterogeneity in vegetation structure within transects. We accounted for edge effects by measuring the distance to forest edge of each transect segment.
We stratified forest fragments into large (≥ 100 ha), medium (~30-50 ha), and small (≤ 20 ha) size categories and selected a minimum of two replicates of each; these represent the range of fragment sizes available in our study landscape. We also included a non-fragmented reference site (Reserva Natural Comunitária Cerro El Inglés, ~750 ha) connected to over 10,000 ha of continuous forest to the north and west along the spine of the Serranía de los Paraguas. We only selected fragments with primary or late-successional secondary forest; vegetation structure and canopy height varied substantially between patches based on intensities of selective logging and land-use histories (see above). Fragments were all separated by ≥ 100 meters to minimize among-patch movement of birds, and all transects in different fragments were at least 250 meters apart.
Transect Surveys for Mixed-species Flocks
We performed transect surveys for mixed-species flocks, adapted from Goodale et al. (2014), in forest fragments from June-August 2017 (boreal migrants absent) and January-March 2018 (boreal migrants present). Both sampling periods corresponded to a dry season in the Western Andes, which has a bimodal two-dry, two-wet seasonality pattern. For each transect, we spent two and a half sequential field days performing continuous transect surveys; we conducted surveys in small fragments, large fragments, and continuous forest sites in random order to avoid a temporal bias in sampling. Surveys were distributed across the morning (7:30-11:30) and evening (15:00-17:30) hours. Transects were walked slowly and continuously by 2-3 observers, including local birdwatchers familiar with all species (Harrison Jones present for all surveys); flocking birds were identified by both sight and sound. When we encountered a flock, we noted the time of day and transect segment in which it was observed and spent up to a maximum of 45 minutes characterizing it with 10x binoculars. At least 5 minutes were spent with each flock, following it if possible. Because detection of species in flocks was imperfect, we only included a flock observation in the analysis if we felt that at least 80% of the individuals were observed (e.g. after spending several minutes of continuous observation at the end of the survey period without observing a new species or individual); incomplete flock observations were not included in analyses. We feel that our survey methodology accurately described flock composition because birds moved and called frequently in flocks, leading to high detectability. We noted the start and end time of each survey, and the presence of incomplete flocks to calculate flock encounter rate. We also supplemented the transect surveys with data from flocks opportunistically observed on a transect while performing other fieldwork. Some flocks in the data set represent flock compositions recorded near but not on a transect; these compositions have no associated transect segment.
Calculation of Landscape-level Variables
We obtained landscape-level variables for analyses using geographic information software (GIS) analysis in ArcGIS (ArcMap 10.3.1; Esri; Redlands, CA). To quantify landscape composition and configuration, we buffered each transect (n = 14) by 1 km; buffers extended from the entire length of the transect. We then calculated measures of landscape composition and configuration using a recent land-cover/use categorization made by the Corporación Autónoma Regional del Valle del Cauca, converted to a 25-m cell-size raster. To quantify landscape composition, we calculated percentages of the forest-cover type within each buffer using the ‘isectpolyrst’ tool in Geospatial Modelling Environment (version 0.7.4.0). We measured landscape configuration for each transect as edge density, or length of all forest edges (in meters) divided by total buffer area (in hectares). The distance to edge was calculated in meters for each 100-meter transect segment (n = 70) as the shortest straight-line distance between the center point of the segment and the nearest edge of the fragment.
Vegetation Measurements and Principal Component Analysis
We measured vegetation structure in each 100-m transect segment used for flock sampling. Vegetation measurements were made from June-August 2017; based on our observations of vegetation, we assumed variation between the two sampling periods was minimal. We used the sampling methodology of James and Shugart (1970), following the modifications made by Stratford and Stouffer (2013), and further modified to be used with belt transects. Broadly, the methodology comprises two components for every 100-meter transect segment: (1) the quantification of canopy cover, ground cover, canopy height, and foliage height diversity of vegetation using point sampling every 10 meters and (2) the quantification of shrub, vine, fern, palm, and tree fern and tree density using 3 meter-wide belt sampling.
For the point sampling, we measured eight variables at ten-meter intervals, for 10 points per 100-meter segment. As a measure of foliage height diversity along the transect, we noted the presence or absence of live vegetation at five heights: <0.5 m, >0.5–3 m, >3–10 m, >10–20 m, and >20 m. Above 3 meters, we used a rangefinder to determine heights while sighting through a tube with crosshairs. Canopy and ground cover were calculated to the nearest 1/8th of the field of view by sighting through a vertical canopy densiometer (GRS Densiometer, Geographic Resource Solutions, Arcata, CA). For each segment, we averaged values for canopy cover, and ground cover, and calculated the proportion of points at which vegetation was present for each height category. For the belt transect sampling, we surveyed vegetation along the same transects and calculated densities for each 100-m transect interval. We counted all shrubs, vines, ferns, tree ferns, and palms encountered on 1.5 meters to either side. Secondly, we counted all trees (woody vegetation > 2 m in height) within 1.5 meters of the transect and measured their diameter at breast height (DBH). Trees were later categorized into six DBH size classes for analysis: 1-7 cm, 8-15 cm, 16-23 cm, 24-30 cm, 31-50 cm, and > 50 cm. We additionally recorded the largest tree’s DBH.
To quantify foliage height diversity, we calculated the Shannon Diversity Index of the proportion of points with vegetation present in each of the five height bands for each segment (n = 70 segments). To reduce redundancy and minimize correlation between variables, we (separately) ordinated our tree DBH and understory plant density data using principal component analysis (PCA: McGarigal et al. 2000) for each 100-meter transect segment. We column (Z score) standardized data prior to ordination to account for differences in the units of measurement and used the covariance matrix to run the PCA. The principal components were interpreted using the significance of the principal component loadings. The PCA was run in R (version 3.5.1) using the princomp function in the stats package. The Shannon Index was calculated using the diversity function of the vegan package
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Point feature class and related table containing the Precise Surveys measurement time series. Measurements include elevations, Northings and Eastings, distances, and point-to-point measurements. Northing and Easting measurements are in CA State Plane Coordinate systems, Elevations measurements are provided in NAVD88 or NGVD29. This dataset is for data exploration only. These measurements and point locations are not considered survey-grade since there may be nuances such as epochs, adjustments, and measurement methods that are not fully reflected in the GIS data. These values are not considered authoritative values and should not be used in-lieu of actual surveyed values provided by a licensed land surveyor. Related data and time series are stored in a table connected to the point feature class via a relationship class. There may be multiple table entries and time series associated to a single mark. Data was assembled through an import of Excel tables and import of mark locations in ArcGIS Pro. Records were edited by DOE, Geomatics, GDSS to resolve any non-unique mark names. This dataset was last updated 4/2024.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Aim Alpine treeline ecotones are influenced by environmental drivers and are anticipated to shift their locations in response to changing climate. Our goal was to determine the extent of recent climate-induced treeline advance in the northeastern United States, and we hypothesized that treelines have advanced upslope in complex ways depending on treeline structure and environmental conditions.
Location White Mountain National Forest (New Hampshire) and Baxter State Park (Maine), USA.
Taxon High-elevation trees – Abies balsamea, Picea mariana, and Betula cordata.
Methods We compared current and historical high-resolution aerial imagery to quantify the advance of treelines over the last four decades, and link treeline changes to treeline form (demography) and environmental drivers. Spatial analyses were coupled with ground surveys of forest vegetation and topographical features to ground-truth treeline classification and provide information on treeline demography and additional potential drivers of treeline locations. We used multiple linear regression models to examine the importance of both topographic and climatic variables on treeline advance.
Results Regional treelines have significantly shifted upslope over the past several decades (on average by 3 m/decade). Diffuse treelines (low tree densities and temperature limited) experienced significantly greater upslope shifts (5 m/decade) compared to other treeline forms, suggesting that both climate warming and treeline demography are important drivers of treeline shifts. Topographical features (slope, aspect) as well as climate (accumulated growing degree days, AGDD) explained significant variation in the magnitude of treeline advance (R2 = 0.32).
Main conclusions The observed advance of regional treelines suggests that climate warming induces upslope treeline shifts particularly at higher elevations where greater upslope shifts occurred in areas with lower AGDD. Overall, our findings suggest that diffuse treelines at high-elevations are more a of a result of climate warming than other alpine treeline ecotones and thus they can serve as key indicators of ongoing climatic changes. Methods Remote sensing analysis Physical copies of true color high resolution historical aerial imagery (sub-meter resolution) were acquired from the Appalachian Mountain Club (AMC) and the USFS White Mountain National Forest Headquarters. Imagery for the Presidential Range was taken in 1978 and Katahdin imagery was taken in 1991. Hard copy images were scanned and converted to TIFF format at 300 dpi (resulting in 0.5 m resolution images). Spatial analyses of change in treeline positions over time were enabled by acquiring high resolution 2018 false-color near-infrared imagery from the National Agriculture Inventory Program (NAIP 2021). Both sets of imagery were taken during summer months (1:40,000 scale). Using ArcGIS 10.8 (ESRI 2011, Redlands, CA, USA), historic imagery was ortho- and georectified to newer imagery via a spline function along 60 ground control points, and then converted into one orthomosaic image (RMSE < 1m). Exact error was always below 5 m for each individual image.
All areas above treeline were manually digitized based on observed tree cover for both sets of images, and the resulting polygons were converted to raster format at 2 m resolution (all raster pixels within each polygon had a value of 1). We identified forest cover only as areas with overlapping crowns and seen as green reflectance in historic imagery and red reflectance in contemporary false-color near-infrared imagery (no visible bare earth or easily identified alpine vegetation). Isolated tree island edges were also digitized and included as treeline if they were >20 m in diameter in any direction (determined in ArcGIS) and included an individual >2 m in height as validated in the field. Alpine rasters were aligned to and multiplied by Lidar-derived digital elevation models (DEMs; 2 m resolution) acquired from New Hampshire and Maine state GIS repositories in order to determine treeline elevations. A total of 400 random sample points (200 for each range, using the ArcGIS random sample point tool) were placed along the outer boundary of the alpine rasters derived from our contemporary imagery, and for each of them we established a paired point at the nearest location along the alpine raster boundary derived from our historic imagery.
Field surveys Field sampling was carried out in the summer of 2021 to characterize tree demography and demographic variation among different treeline forms identified from the current imagery. A subset of contemporary points from our GIS-based sample point pairs (n = 54, 33 in the Presidential Range, 21 in the Katahdin Range, see above) were selected using a random number generator to serve as sites for establishing belt transects. Each belt transect was 100 m in length and 4 m wide (2 m on either side of transect for a total area of 400 m2) and perpendicular to elevation contours, spanning the ecotone between closed forest interior and open alpine habitat. The start of each transect (the lowest elevation on the transect, set as 0 m) was located 50 m downslope (straight-line distance) of contemporary sample points. The start and end of each belt transect were recorded using a Garmin GPSMAP 64 (Garmin, Olathe, Kansas, USA). Each tree > 0.1 m in height with a stem rooted within the transect was recorded noting species, basal diameter (10 cm from the ground), height, horizontal distance from the transect, and distance along the transect (to estimate stem density of trees). Slope, aspect, elevation, and soil depth to bedrock (using a metal soil probe) were recorded at 20 m intervals along the belt transect centerline (0 m, 20 m, 40 m, 60 m, 80 m, 100 m).
For all belt transects, treeline form was assigned based on visual assessments (based on changes in tree height and density across the ecotone). Additionally, we visited a majority of our other accessible contemporary random sample points (~80%) in order to assign treeline form and ground-truth remote sensed treeline classifications. For all visited sample points we took a new GPS point at the field-verified treeline location (continuous canopy cover and at least one individual >2 m in height) nearest to our random sample points (assigned from our treeline delineation procedure). The new points were compared to the original sample point locations and assessed for accuracy (measuring linear distance between points). Eye-level photos of treelines were taken at all sample points to keep a permanent record of treeline appearance. We stress that because tree height could not be extracted or field validated from our historic imagery, some krummholz individuals (<2 m) may have been present above our treeline delineation using our classification scheme. Out of all 400 sample point pairs across both the Presidentials and Katahdin, 88 were classified as abrupt (22%), 70 as diffuse (17.5%), 84 as island (21%), and 162 as krummholz (40.5%).
Spatial data processing To examine the factors potentially influencing the spatial dynamics of treeline advance, both climatological and topographical variables were extracted for the Presidential Range. We could not conduct a similar analysis for Katahdin given the lack of fine-scale climatological data in that area. Elevation was extracted from 2 m state produced DEMs. Using the Spatial Analyst toolbox in ArcGIS, topographical variables such as slope, aspect, and curvature (measure of convex or concave shape of the terrain ranging between -4 and 4) were extracted from our DEMs. Circular aspect data (measured in degrees, 0-360⁰) were converted to radians and linearized (east and west = 1, north and south = 0).
Before linearization, aspect values were used to calculate degree difference from prevailing wind (DDPW - 290˚) and degree difference from south (DDS - 180˚) variables. DDPW is a proxy for exposure to strong winds that can cause both direct physical damage and damage from icing, as well as a proxy for the potential for snow accumulation. The prevailing wind direction for the Presidential range (290˚) was based on wind measurements from the Mount Washington Observatory. DDS is a proxy for the amount of direct solar radiation (in the northern hemisphere). Average monthly mean, maximum, and minimum temperatures as well as annual accumulated growing degree days (AGDD) were calculated from an array of 34 HOBO dataloggers (Onset Computer Corporation, Bourne, MA, USA) placed at various elevations and adjacent to Appalachian Mountain Club buildings in the White Mountains of New Hampshire. HOBO loggers have recorded hourly air temperature at ground level (0 m height) continuously since 2007. Air temperature means and AGDD were calculated from HOBO logger data; for AGDD calculations we used a base temperature of 4˚C, consistent with other studies examining growth patterns of balsam fir, the dominant species within studied treelines. AGDD was calculated as the accumulated maximum value of growing degree days (GDD) in a year.
Gridded maps (90 m spatial resolution) of mean annual temperature (Tmean, between 2007 and 2020) and AGDD for the Presidential Range region were produced using a cokriging interpolation method. To do this, temperatures and AGDD response variables were first checked for normality using qq-plots. Next, correlation between response variables and potential covariates was assessed; both elevation and aspect were highly correlated with HOBO derived temperature and AGDD. We used normal-score simple cokriging with a stable semi-variogram model to interpolate (prediction map) climate variables over the entire spatial extent of the Presidential Range (RMSE ~ 1 for both Tmean and AGDD). Mean annual precipitation was estimated from 30-year normal PRISM climate data (1991-2020; PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu).
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This data collection includes connection pipes from gullies and houses to the main sewer, as well as the geometry of the sewer strands and wells of the main sewer. The data related to connections can also be retrieved using a web feature service: https://data.riox.online/eindhoven/wfs
https://data.eindhoven.nl/assets/theme_image/riool.PNG" alt="">
A number of points for attention:
This data collection contains a large amount of line pieces, to view them all you need to zoom in for performance reasons.
Fittings House Connection, some Connection Lines House Connection, and Wells are originally points that are shown as closed line objects in the map.
The home connections (both connection lines and fittings) are not yet complete for the whole of Eindhoven, these are still being added per area at the time of writing.
The attribute TYPE can be used to deduce whether it is a part of the main sewer, a well, or data related to home connections.
Maindriole
The location of the main sewer is only visible for reference. The available categories are: Mixed water, Rainwater (sky water), Dirty water, Dirty water + Roof surface.
Putting
For reference purposes only, the name of the well and its location are visible from the wells.
Home connections
The connection pipe and the associated attachment have been made clear from the house connections.
For ‘House Connection Tools’, the following attributes are regularly available: ADRES (adres waarop het hulpstuk van toepassing is, dit attribuut is niet altijd gevuld), PLAATS (zou altijd Eindhoven moeten zijn voor deze data, betreft het niet Eindhoven, dan een fout), STELSEL (stelsel waarop het hulpstuk is aangesloten), DIAMETER (diameter van het hulpstuk in millimeters, als 0 dan onbekend), MATERIAAL (materiaal van het hulpstuk), de BEGINPUT en EINDPUT (stemmen overeen met de PUTNAAM van een rioolput uit het hoofdriool, dit attribuut is niet altijd gevuld), PUTAFSTAND (afstand hulpstuk tot de BEGINPUT, dit attribuut is niet altijd gevuld), DIEPTE (maar sporadisch gevuld, “-“ of leeg wanneer onbekend), JAAR (jaar van aanleg, niet altijd gevuld), DATUM (plaatsingsdatum in bestand, niet altijd gevuld), NLCS (laagnaam conform Nederlandse CAD standaard, niet altijd gevuld), REFERENTIE (dit attribuut is niet altijd gevuld), en TYPE (of het gaat om een ontstoppingsstuk of een inlaat hulpstuk).
The following attributes are available for ‘House Connection Lines’: ADDRESS (address to which the attachment applies, this attribute is not always filled), PLACE (should always be Eindhoven for these dates, it is not Eindhoven, then an error), STELSEL (system to which the attachment is connected), DIAMETER (diameter of the attachment in millimetres, if 0 then unknown), MATERIAL (material of the attachment), BEGINPUT and EINDPUT (corresponding to the PUTNAME of a sewer well from the main sewer, this attribute is not always filled), PUTAFSTAND (distance attachment from the BEGINPUT, this attribute is not always filled), DIEPTE (but sporadically filled, “-“ or empty when unknown), YEAR (year of construction, not always filled), DATE (placement date in file, not always filled), NLCS (low name according to Dutch CAD standard, not always filled), REFERENCE (this attribute is not always filled).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Mali. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterDownload In State Plane Projection Here The 2017 Digital Terrain Model (DTM) is a 2 foot pixel resolution raster in Erdas IMG format. This was created using the ground (class = 2) lidar points and incorporating the breaklines. The DTMs were developed using LiDAR data. LiDAR is an acronym for LIght Detection And Ranging. Light detection and ranging is the science of using a laser to measure distances to specific points. A specially equipped airplane with positioning tools and LiDAR technology was used to measure the distance to the surface of the earth to determine ground elevation. The classified points were developed using data collected in April to May 2017. The LiDAR points, specialized software, and technology provide the ability to create a high precision three-dimensional digital elevation and/or terrain models (DEM/DTM). The use of LiDAR significantly reduces the cost for developing this information. The DTMs are intended to correspond to the orthometric heights of the bare surface of the county (no buildings or vegetation cover). DTM data is used by county agencies to study drainage issues such as flooding and erosion; contour generation; slope and aspect; and hill shade images. This dataset was compiled to meet the American Society for Photogrammetry and Remote Sensing (ASPRS) Accuracy Standards for Large-Scale Maps, CLASS 1 map accuracy. The U.S. Army Corps of Engineers Engineering and Design Manual for Photogrammetric Production recommends that data intended for this usage scale be used for any of the following purposes: route location, preliminary alignment and design, preliminary project planning, hydraulic sections, rough earthwork estimates, or high-gradient terrain / low unit cost earthwork excavation estimates. The manual does not recommend that these data be used for final design, excavation and grading plans, earthwork computations for bid estimates or contract measurement and payment. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
To provide an alternative to the native NHD measuring system of percentage of distance along reach length with one that enhances the ability to examine distance relationships along entire stream courses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Central African Republic. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Kenya. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Sudan. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Liberia. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Senegal. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in South Sudan. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Ethiopia. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Sierra Leone. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Cameroon. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Uganda. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.
Facebook
TwitterThis interactive map helps the citizens of Seabrook, TX find and locate their nearest early voting polling location. It was created using a list of address of known early voting polling locations along with a created buffer zones of 5, 10, 15, 20, 40, and 60 miles from City Hall in Seabrook to help visualize the distance from each polling site. It also gives a widget tool to help measure distances between points selected by the user, and also print if needed a map of a given location. Each polling site also has the information on where the polling room is for each site where it is applicable so users can know where to go before they arrive to the site.