Facebook
TwitterThis dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.
It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.
If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.
County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.
This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.
There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.
The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.
DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.
Facebook
TwitterThe Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
Facebook
TwitterMnTOPO is a web application for viewing, printing and downloading
high-resolution elevation data for the State of Minnesota that was
collected using LiDAR technology. It runs on a variety of devices including desktop PCs, tablets, and mobile phones.
The data you see and download in MnTOPO was made possible by the Minnesota elevation mapping project. MnTOPO is a collaborative effort between staff from the Minnesota
Information Technology (MN.IT) @ Minnesota Department of Natural
Resources and MN.IT @ Minnesota Geospatial Information Office (MnGeo).
Funding was provided by the Clean Water Fund of the Clean Water, Land and Legacy Amendment.
Facebook
TwitterThe Digital Bedrock Geologic-GIS Map of Voyageurs National Park and Vicinity, Minnesota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (voya_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (voya_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (voya_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (voya_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (voya_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (voya_bedrock_geology_metadata_faq.pdf). Please read the voya_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Minnesota Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (voya_bedrock_geology_metadata.txt or voya_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe way to access Layers Quickly.
Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11
To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.
Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.
Installation:
After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
1. Open ArcGIS Pro
2. Project -> Add-In Manager -> Options
3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar
The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.
Facebook
TwitterThese are the counties in Minnesota that currently have a Story Map. Click on the county you wish to view and select the link to go to the story.
Facebook
TwitterDepth to bedrock. A raster showing the depth to the bedrock surface (thickness of Quaternary glacial sediments) from the land surface, in feet, across the state of Minnesota and includes that part of Minnesota that lies in the western part of the Lake Superior basin. The bedrock surface is an erosional surface comprised of Cretaceous (Mesozoic) rocks and sediments, Paleozoic rocks, and Precambrian rocks. Tribal areas of Grand Portage and Mille Lacs have been removed as per tribal request.
Facebook
TwitterThe Digital Geologic-GIS Map of Saint Croix National Riverway and Vicinity, Minnesota and Wisconsin is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sacn_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sacn_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sacn_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sacn_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sacn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sacn_geology_metadata_faq.pdf). Please read the sacn_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Minnesota Geological Survey, Wisconsin Geological and Natural History Survey and National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sacn_geology_metadata.txt or sacn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis dataset represents the county boundaries, as recognized by the Minnesota Department of Transportation. There are 87 counties in Minnesota.
Check other metadata records in this package for more information on County Boundaries Information.
Link to ESRI Feature Service:
County Boundaries in Minnesota: County Boundaries
Facebook
TwitterThis is the authoritative public subset of the compiled Minnesota statewide parcel dataset. By authoritative, we mean this is the official source of statewide parcel data compiled from the counties that have opted-in to be included. Counties are the authoritative source and owner of parcel data. Quarterly, MnGeo compiles and standardizes the county data using the Minnesota Geospatial Advisory Council's parcel data standard. In the compilation process, some data content is standardized or otherwise modified (capitalization and address parsing are the most common changes). The full opt-in compiled parcel metadata record can be found on the Minnesota Geospatial Commons.To obtain the most current and authoritative data in its original form, users are referred back to the respective county. Links to each county's downloadable and/or web-viewable data, where known, are available in the accompanying spatial metadata dataset.Known limitations:Data provided by counties are often limited to a subset of fields and may not be the same fields across all counties. The fields provided by a given county may change by quarter.The USECLASS and XUSECLASS fields, while often consistent within a county, are not standardized between counties.The OWN_ADDR_# and TAX_ADDR_# fields are often populated in ways not consistent with the standard. In particular, an address number/street address may not be in Line 1, and city/state/zip cannot be relied on to be in Line 3. Even within a single county, the city/state/zip line may not be in a consistent field.Parcels with addresses on fractional streets (5-1/2th Ave) cause issues for our address parser when parsing is needed for aggregation and may be missing some or all of the address data. Certain other oddly named streets can also cause this behavior.A maximum record count has been set on the mapping service. This limits the number of features that can be returned in a single request. It is set to balance usability and response time.
Facebook
TwitterThe Digital Geologic-GIS Map of Pipestone National Monument, Minnesota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (pipe_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (pipe_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (pipe_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (pipe_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (pipe_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (pipe_geology_metadata_faq.pdf). Please read the pipe_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service, Midwest Region. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pipe_geology_metadata.txt or pipe_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.
To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization
To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: http://www.mngeo.state.mn.us/county_contacts.html
Facebook
TwitterImproving the quality of water discharged from agricultural watersheds requires comprehensive and adaptive approaches for planning and implementing conservation practices. These measures will need to consider landscape hydrology, distributions of soil types, land cover, and crop distributions in an integrated manner. The two most consistent challenges to these efforts will be consistency and reliability of data, and the capacity to translate conservation planning from watershed to farm and field scales. The translation of scale is required because, while conservation practices can be planned based on a watershed scale framework, they must be implemented by landowners in specific fields and riparian sites that are under private ownership. To support these goals, it has been necessary to develop planning approaches, high-resolution spatial datasets, and conservation practice assessment tools that will allow the agricultural and conservation communities to characterize and mitigate these challenges. The field boundary dataset represents a spatial framework for assembling and maintaining geospatial data to support conservation planning at the scale where conservation practices are implemented. This field boundaries dataset has been assembled to support field-scale agricultural conservation planning using the USDA/ARS Agricultural Conservation Planning Framework (ACPF). The original data used to create this database are the pre-2008 Farm Bill FSA common land unit (CLU) datasets. A portion of metadata found herein pertains to the USDA FSA CLU. The remaining information has been developed to reflect the repurposing of the data in its aggregated form. It is important to note that all USDA programmatic and ownership information that was associated with the original data have been removed. Beyond that, these data has been extensively edited to reflect crop-specific land use consistent with 2015 land cover as derived from 2015 NASS Crop Data Layer datasets and 2015 aerial photography, and no longer reflects discrete ownership patterns. Resources in this dataset:Resource Title: Agricultural land use by field: Minnesota 2010-2019. File Name: MN_ACPFfields2019.zipResource Description: This field boundaries dataset has been assembled to support field-scale agricultural conservation planning using the USDA/ARS Agricultural Conservation Planning Framework (ACPF).Resource Software Recommended: ArcGIS,url: https://www.esri.com/en-us/home Resource Title: Minnesota Field Boundaries 2019. File Name: MN_ACPF_fieldBoundaries_2019.pdfResource Description: Minnesota Field Boundaries 2019Resource Title: Minnesota ACPF Crop History 2010-2019. File Name: MN_ACPFfields_CropHistory2010_2019.pdfResource Description: Minnesota ACPF Crop History 2010-2019Resource Title: Minnesota ACPF Land Use 2014-2019. File Name: MN_ACPFfields_LandUse2014_2019.pdfResource Description: Minnesota ACPF Land Use 2014-2019
Facebook
TwitterLand cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph interpretation and field surveys. There is a minimum mapping unit of 1 acre for natural vegetation and 2 acres for artificial cover types.Link to Attribute Table Information: http://gis.hennepin.us/OpenData/Metadata/MLCCS.pdf Data updated: dailyUse Limitations: This data (i) is furnished "AS IS" with no representation as to completeness or accuracy; (ii) is furnished with no warranty of any kind; and (iii) is not suitable for legal, engineering or surveying purposes. Hennepin County shall not be liable for any damage, injury or loss resulting from this data. General questions about this data set, including errors, omissions, corrections and/or updates should be directed to the Hennepin County Department of Environment & Energy (612-348-3777).
Facebook
TwitterThese are the counties in Minnesota that currently have a Story Map. Click on the county you wish to view and select the link to go to the story.
Facebook
Twitter
DCGIS is an interactive map that provides increased functionality for advanced users as well as access to about 150 layers of GIS data, including parcel information, contour lines, aerial photography, county park amenities, park trails, bikeways, county road construction, roundabouts, floodplains and more. It allows you to create a map at any scale you wish.
The Interactive GIS Map is intended for use on any device - mobile or desktop - with high speed access.
Facebook
TwitterAbout this itemThe Minnesota K12 GIS Education Hub is a resource site for educators in Minnesota looking to incorporate geospatial tools in their teaching.Author/ContributorShana CrossonOrganizationUniversity of MinnesotaOrg Websitewww.umn.edu
Facebook
TwitterScott County Parcels represent property tax boundaries and were created, and are maintained, by the Survey department. The tax boundaries are joined to the Assessor's CAMA data using the PID field providing field attributes for each property. For a list of field descriptions, click here.
Facebook
TwitterWashington County, MN Tax Parcels. An independent manual check of the parcel data was made at the time of its initial development whereby all geo-coded parcel legal descriptions in a PLSS section were reinterpreted and examined for accuracy and completeness on the hard copy check plot. As each new plat or lot division occurs, a similar process is repeated for the new additions during the maintenance period. Multiple lines of ownership indicating ambiguity in property line location are merged into a single line if falling within 3 feet of each other. Gaps or overlaps in these situations are not shown. In some cases where two lines converge; e.g., where at one end the two lot lines are within 0.50 feet of each other and at the other end they are within 6.00 feet of each other they may be merged because the average discrepancy is 3 feet or less. Where gaps or overlaps exist in excess of approximately 3 feet in width, they are shown with text notation indicating APPARENT GAP or AREA OF DISCREPANCY.
Facebook
TwitterBluffs within Scott County.
Facebook
TwitterThis dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.
It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.
If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.
County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.
This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.
There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.
The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.
DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.