Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS has many analysis and geoprocessing tools that can help you solve real-world problems with your data. In some cases, you are able to run individual tools to complete an analysis. But sometimes you may require a more comprehensive way to create, share, and document your analysis workflow.In these situations, you can use a built-in application called ModelBuilder to create a workflow that you can reuse, modify, save, and share with others.In this course, you will learn the basics of working with ModelBuilder and creating models. Models contain many different elements, many of which you will learn about. You will also learn how to work with models that others create and share with you. Sharing models is one of the major advantages of working with ModelBuilder and models in general. You will learn how to prepare a model for sharing by setting various model parameters.After completing this course, you will be able to:Identify model elements and states.Describe a prebuilt model's processes and outputs.Create and document models for site selection and network analysis.Define model parameters and prepare a model for sharing.
This ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.
Pacific lamprey (Entosphenus tridentata) are native fish to the Columbia River Basin. Over the past 60 years, anthropogenic disturbances have contributed to a 95% decline of historical population numbers. Member-tribes of the Columbia River Inter-Tribal Fish Commission have acknowledged the importance of Pacific lamprey to the Columbia River ecosystem and expressed concern about the loss of an essential tribal cultural resource. As a result, the Columbia River Inter-Tribal Fish Commission created the Tribal Pacific Lamprey Restoration Plan to halt their decline, re-establish the species, and restore the population to sustainable, harvestable levels throughout their historical range. Limited knowledge about the movement and preferred habitat of larval Pacific lamprey, such as optimal habitat conditions, demographic information, and species resilience, results in challenges to monitor and protect the species. Pacific lamprey is known to use the mainstem Columbia River to migrate between...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Grid Garage Toolbox is designed to help you undertake the Geographic Information System (GIS) tasks required to process GIS data (geodata) into a standard, spatially aligned format. This format is required by most, grid or raster, spatial modelling tools such as the Multi-criteria Analysis Shell for Spatial Decision Support (MCAS-S). Grid Garage contains 36 tools designed to save you time by batch processing repetitive GIS tasks as well diagnosing problems with data and capturing a record of processing step and any errors encountered.
Grid Garage provides tools that function using a list based approach to batch processing where both inputs and outputs are specified in tables to enable selective batch processing and detailed result reporting. In many cases the tools simply extend the functionality of standard ArcGIS tools, providing some or all of the inputs required by these tools via the input table to enable batch processing on a 'per item' basis. This approach differs slightly from normal batch processing in ArcGIS, instead of manually selecting single items or a folder on which to apply a tool or model you provide a table listing target datasets. In summary the Grid Garage allows you to:
The Grid Garage is intended for use by anyone with an understanding of GIS principles and an intermediate to advanced level of GIS skills. Using the Grid Garage tools in ArcGIS ModelBuilder requires skills in the use of the ArcGIS ModelBuilder tool.
Download Instructions: Create a new folder on your computer or network and then download and unzip the zip file from the GitHub Release page for each of the following items in the 'Data and Resources' section below. There is a folder in each zip file that contains all the files. See the Grid Garage User Guide for instructions on how to install and use the Grid Garage Toolbox with the sample data provided.
This permit conversion tool converts ePermit .xls files to quarter-quarter or lat/long locations. Also included is a public lands survey geodatabase necessary to run the POU tool. This Model Builder toolset is available for ArcGIS 10.1-5. The March 2018 update provided here tests for field types and processes the fields accordingly.
The downloadable ZIP file contains model documentation and contact information for the model creator. For more information, or a copy of the project report which provides greater model detail, please contact Ryan Urie - traigo12@gmail.com.This model was created from February through April 2010 as a central component of the developer's master's project in Bioregional Planning and Community Design at the University of Idaho to provide a tool for identifying appropriate locations for various land uses based on a variety of user-defined social, economic, ecological, and other criteria. It was developed using the Land-Use Conflict Identification Strategy developed by Carr and Zwick (2007). The purpose of this model is to allow users to identify suitable locations within a user-defined extent for any land use based on any number of social, economic, ecological, or other criteria the user chooses. The model as it is currently composed was designed to identify highly suitable locations for new residential, commercial, and industrial development in Kootenai County, Idaho using criteria, evaluations, and weightings chosen by the model's developer. After criteria were chosen, one or more data layers were gathered for each criterion from public sources. These layers were processed to result in a 60m-resolution raster showing the suitability of each criterion across the county. These criteria were ultimately combined with a weighting sum to result in an overall development suitability raster. The model is intended to serve only as an example of how a GIS-based land-use suitability analysis can be conceptualized and implemented using ArcGIS ModelBuilder, and under no circumstances should the model's outputs be applied to real-world decisions or activities. The model was designed to be extremely flexible so that later users may determine their own land-use suitability, suitability criteria, evaluation rationale, and criteria weights. As this was the first project of its kind completed by the model developer, no guarantees are made as to the quality of the model or the absence of errorsThis model has a hierarchical structure in which some forty individual land-use suitability criteria are combined by weighted summation into several land-use goals which are again combined by weighted summation to yield a final land-use suitability layer. As such, any inconsistencies or errors anywhere in the model tend to reveal themselves in the final output and the model is in a sense self-testing. For example, each individual criterion is presented as a raster with values from 1-9 in a defined spatial extent. Inconsistencies at any point in the model will reveal themselves in the final output in the form of an extent different from that desired, missing values, or values outside the 1-9 range.This model was created using the ArcGIS ModelBuilder function of ArcGIS 9.3. It was based heavily on the recommendations found in the text "Smart land-use analysis: the LUCIS model." The goal of the model is to determine the suitability of a chosen land-use at each point across a chosen area using the raster data format. In this case, the suitability for Development was evaluated across the area of Kootenai County, Idaho, though this is primarily for illustrative purposes. The basic process captured by the model is as follows: 1. Choose a land use suitability goal. 2. Select the goals and criteria that define this goal and get spatial data for each. 3. Use the gathered data to evaluate the quality of each criterion across the landscape, resulting in a raster with values from 1-9. 4. Apply weights to each criterion to indicate its relative contribution to the suitability goal. 5. Combine the weighted criteria to calculate and display the suitability of this land use at each point across the landscape. An individual model was first built for each of some forty individual criteria. Once these functioned successfully, individual criteria were combined with a weighted summation to yield one of three land-use goals (in this case, Residential, Commercial, or Industrial). A final model was then constructed to combined these three goals into a final suitability output. In addition, two conditional elements were placed on this final output (one to give already-developed areas a very high suitability score for development [a "9"] and a second to give permanently conserved areas and other undevelopable lands a very low suitability score for development [a "1"]). Because this model was meant to serve primarily as an illustration of how to do land-use suitability analysis, the criteria, evaluation rationales, and weightings were chosen by the modeler for expediency; however, a land-use analysis meant to guide real-world actions and decisions would need to rely far more heavily on a variety of scientific and stakeholder input.
Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes:
Percent of neighborhood over 8% of slope
Slope Classes
0 - 20%
400
21% -50%
300
51% - 80%
200
81%
100
Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:
Change in elevation
Relief Class ID
0 – 30 meters
10
31 meter – 90 meters
20
91 meter – 150 meters
30
151 meter – 300 meters
40
301 meter – 900 meters
50
900 meters
60
The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:
Percent of neighborhood over 8% slope in upland or lowland areas
Profile Class
Less than 50% gentle slope is in upland or lowland
0
More than 75% of gentle slope is in lowland
1
50%-75% of gentle slope is in lowland
2
50-75% of gentle slope is in upland
3
More than 75% of gentle slope is in upland
4
Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
This layer is subset of World Ecological Facets Landform Classes Image Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This compressed file contains models developed through ArcGIS Model Builder for reconstructing USA historical population maps, including five models (M1-M5), and the determination of census tract cutoff population, s and d parameter values.
This layer is a subset of World Ecological Facets Landforms Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Daily Chlorophyll-a concentration (mg/m-3) at ~4.6 km resolution. Chlorophyll in water changes the way it reflects and absorbs sunlight, allowing scientists to map the amount and location of phytoplankton using optics. These measurements give scientists valuable insights into the health of the ocean environment, and help scientists study the ocean carbon cycle. Subtle changes in chlorophyll-a signify various types and quantities of marine phytoplankton (microscopic marine plants), the knowledge of which has both scientific and practical applications.These chlorophyll layers show milligrams of chlorophyll per cubic meter of seawater. Places where chlorophyll amounts were very low, indicating very low numbers of phytoplankton are blue. Places where chlorophyll concentrations were high, meaning many phytoplankton were growing, are dark green. The observations come from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite. Places where MODIS could not collect data because of sea ice, polar darkness, or clouds are masked.The MODIS instrument is managed by NASA/Goddard Space Flight Center, Greenbelt, Maryland and was built by Raytheon/Santa Barbara Remote Sensing, Goleta, California. For further information, access the MODIS Homepage at modis.gsfc.nasa.govPhenomenon Mapped: Chlorophyll-aUnits: mg/m-3Time Interval: DailyTime Extent: 2002/07/03 12:00:00 UTC to presentCell Size: 4.6 kmSource Type: ContinuousPixel Type: Floating PointData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global OceansSource: NASAUpdate Cycle: DailyArcGIS Server URL: https://earthobs3.arcgis.com/arcgis Time: This is a time-enabled layer. It shows the average chlorophyll-a concentration during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the average of all days in the time extent. Minimum temporal resolution is one day; maximum is one month.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder. Units are in mg/m-2. Do not use this layer for analysis while the Cartographic Renderer processing templates are applied.This layer is part of the Living Atlas of the World that provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
Sea Surface Temperature is a key climate and weather measurement used for weather prediction, ocean forecasts, tropical cyclone forecasts, and in coastal applications such as fisheries, pollution monitoring and tourism. El Niño and La Niña are two examples of climate events which are forecast through the use of sea surface temperature maps. The Naval Oceanographic Office sea surface temperature dataset is calculated from satellite-based microwave and infrared imagery. These data are optimally interpolated to provide a daily, global map of the midday (12:00 pm) sea surface temperature. Learn more about the source data. Phenomenon Mapped: Sea Surface TemperatureUnits: Degrees CelsiusTime Interval: DailyTime Extent: 2008/04/01 12:00:00 UTC to presentCell Size: 11 kmSource Type: ContinuousPixel Type: Floating PointData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global OceansSource: Naval Oceanographic OfficeUpdate Cycle: SporadicArcGIS Server URL: https://earthobs2.arcgis.com/arcgisTime: This is a time-enabled layer. It shows the average sea surface temperature during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the average of all days in the time extent. Minimum temporal resolution is one day; maximum is one month.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder. Units are in degrees Celsius, and there is a processing template to convert pixels to Fahrenheit. Do not use this layer for analysis while the Cartographic Renderer processing template is applied.This layer is part of the Living Atlas of the World that provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.
This webmap is a subset of Distance to Coast (km) Global Coverage. Portions of the world's interior, such as central Asia are extremely secluded from the ocean and are more than 2,000 km from the nearest coast. Distance to coast can be used in asset management and modeling project costs. Phenomenon Mapped: Distance to coastUnits: KilometersCell Size: 655.9259912 metersSource Type: DiscretePixel Type: Signed integerSpatial Reference: World Equidistant CylindricalMosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: 2015ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Distance to Coast layer was calculated by Esri using the Euclidean Distance Tool in ArcMap and the Esri Country Boundaries layer.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – kilometers to miles, Unit Conversion - kilometers to nautical miles, Cartographic Renderer, and Classified Renderer see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Ocean depth plays an important role in the distribution and abundance of living organisms and has important implications for shipping and offshore development projects such as wind power and oil extraction.Phenomenon Mapped: Seafloor depth, bathymetryUnits: Meters below sea levelCell Size: 30 arc seconds, approximately 1 kmSource Type: DiscretePixel Type: Signed integerSpatial Reference: GCS_WGS_1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: Marine Conservation Institute (MCI)Citation: Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, et al. (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy 32: 355–371.Publication Date: 2009ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Marine Conservation Institute used this dataset as an input to a predictive habitat model documented in the publication Global Habitat Suitability for Framework-Forming Cold-Water Corals.The source data is available from the Scripps Institution of Oceanography Satellite Geodesy Webpage.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – meters to feet, Cartographic Renderer, Aspect, Slope, and Hillshade - see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Marine life have certain thresholds for temperature that they can live in. For instance, deep-water corals have been recorded in temperatures of -1⁰C. Seafloor temperatures generally decrease with increasing depth. Phenomenon Mapped: Seafloor temperatureUnits: Degrees CelsiusCell Size: 30 arc seconds, approximately 1 kmSource Type: DiscretePixel Type: Signed integerSpatial Reference: GCS_WGS_1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: Marine Conservation Institute (MCI)Citation: Boyer TP, Levitus S, Garcia HE, Locamini RA, Stephens C, et al. (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. International Journal of Climatology 25: 931–945.Publication Date: 2005ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Marine Conservation Institute used this dataset as an input to a predictive habitat model documented in the publication Global Habitat Suitability for Framework-Forming Cold-Water Corals.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – Celsius to Fahrenheit, Unit Conversion – Celsius to Kelvin, and Cartographic Renderer - see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Salinity is the quantity of dissolved salt in water. Marine life have a limited range of salinity that they can live in. Open ocean seawater typically has a salinity of 32 to 37. Temperature and salinity characteristics help determine origin of water masses.Phenomenon Mapped: Seafloor SalinityUnits: g/kg - practical salinity scaleCell Size: 30 arc seconds, approximately 1 kmSource Type: DiscretePixel Type: Unsigned integerSpatial Reference: GCS_WGS_1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: Marine Conservation Institute (MCI)Citation: Boyer TP, Levitus S, Garcia HE, Locamini RA, Stephens C, et al. (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. International Journal of Climatology 25: 931–945.Publication Date: 2005ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Marine Conservation Institute used this dataset as an input to a predictive habitat model documented in the publication Global Habitat Suitability for Framework-Forming Cold-Water Corals.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Cartographic Renderer - see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Aragonite is the primary mineral in cool water marine environments. Aragonite saturation state is a function of carbonate ion concentration and used to track ocean acidification. Aragonite is used by marine life “calcifiers,” organisms that construct their shells and skeletons from the mineral. Coral reefs are mainly found in regions where open ocean aragonite saturation is 3.0 or higher. Phenomenon Mapped: Seafloor Omega AragoniteUnits: Omega(Ω) - Calculated saturation stateCell Size: 30 arc seconds, approximately 1 kmSource Type: DiscretePixel Type: Unsigned integerSpatial Reference: GCS_WGS_1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: Marine Conservation Institute (MCI)Citation: Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.Publication Date: 2005ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Marine Conservation Institute used this dataset as an input to a predictive habitat model documented in the publication Global Habitat Suitability for Framework-Forming Cold-Water Corals.The source data is available from the Scripps Institution of Oceanography Satellite Geodesy Webpage.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Cartographic Renderer - see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
This layer is a subset of World Ecological Facets Landforms Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Portions of the world's interior, such as central Asia are extremely secluded from the ocean and are more than 2,000 km from the nearest coast. Distance to coast can be used in asset management and modeling project costs. Phenomenon Mapped: Distance to coastUnits: KilometersCell Size: 655.9259912 metersSource Type: DiscretePixel Type: Signed integerSpatial Reference: World Equidistant CylindricalMosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: 2015ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Distance to Coast layer was calculated by Esri using the Euclidean Distance Tool in ArcMap and the Esri Country Boundaries layer.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – kilometers to miles, Unit Conversion - kilometers to nautical miles, Cartographic Renderer, and Classified Renderer see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS has many analysis and geoprocessing tools that can help you solve real-world problems with your data. In some cases, you are able to run individual tools to complete an analysis. But sometimes you may require a more comprehensive way to create, share, and document your analysis workflow.In these situations, you can use a built-in application called ModelBuilder to create a workflow that you can reuse, modify, save, and share with others.In this course, you will learn the basics of working with ModelBuilder and creating models. Models contain many different elements, many of which you will learn about. You will also learn how to work with models that others create and share with you. Sharing models is one of the major advantages of working with ModelBuilder and models in general. You will learn how to prepare a model for sharing by setting various model parameters.After completing this course, you will be able to:Identify model elements and states.Describe a prebuilt model's processes and outputs.Create and document models for site selection and network analysis.Define model parameters and prepare a model for sharing.