47 datasets found
  1. Road Network Data of Hong Kong

    • hub.arcgis.com
    • opendata.esrichina.hk
    Updated Aug 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2018). Road Network Data of Hong Kong [Dataset]. https://hub.arcgis.com/datasets/188a2dfc78bd44d19fa99edfe87b20e7
    Explore at:
    Dataset updated
    Aug 22, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Hong Kong
    Description

    The Intelligent Road Network dataset provided by the Transport Department includes traffic directions, turning restrictions at road junctions, stopping restrictions, on-street parking spaces and other road traffic data for supporting the development of intelligent transport system, fleet management system and car navigation etc. by the public.

    Esri China (HK) has prepared this File Geodatabase containing a Network Dataset for the Intelligent Road Network to support Esri GIS users to use the dataset in ArcGIS Pro without going through long configuration steps. Please refer to this guideline to use the Road Network Dataset in ArcGIS Pro for routing analysis. This network dataset has been configured and deployed the following restrictions:

    Speed LimitTurnIntersectionTraffic FeaturesPedestrian ZoneTraffic Sign of ProhibitionVehicle RestrictionThe coordinate system of this dataset is Hong Kong 1980 Grid.The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Transport Department at https://data.gov.hk/en-data/dataset/hk-td-tis_15-road-network-v2.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.Dataset last updated on: 2021 July

  2. a

    OSM Berlin Germany Streets Motorcar Network Dataset (ArcGIS 9.3.1 Layer...

    • hub.arcgis.com
    Updated Sep 22, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GriGun (2010). OSM Berlin Germany Streets Motorcar Network Dataset (ArcGIS 9.3.1 Layer Package) [Dataset]. https://hub.arcgis.com/datasets/b49741e9f7f94cb79a653be0d8c2a172
    Explore at:
    Dataset updated
    Sep 22, 2010
    Dataset authored and provided by
    GriGun
    License

    Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
    License information was derived automatically

    Area covered
    Description

    The data has been automatically extracted from OSM and transformed to a full functional Network Dataset with a tool written by Eva Peters. For more information on the tool and Evas thesis click here (German) or here (English). Check out all functions like routing, service area, cost matrix etc. Get further Information on Network Analyst in the ArcGIS Desktop Help.

  3. g

    Network analysis in the 20th century. Viennese district: Police locations...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Network analysis in the 20th century. Viennese district: Police locations and the way to potential accident sites | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_4c19ba91-bc3b-4c18-8d68-7d554e34f4a2
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is a tutorial on how to use GIP data for the ESRI ArcGIS Network Analyst.

  4. Urban Road Network Data

    • figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). Urban Road Network Data [Dataset]. http://doi.org/10.6084/m9.figshare.2061897.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tool and data set of road networks for 80 of the most populated urban areas in the world. The data consist of a graph edge list for each city and two corresponding GIS shapefiles (i.e., links and nodes).Make your own data with our ArcGIS, QGIS, and python tools available at: http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  5. Pedestrian Network Data of Hong Kong

    • hub.arcgis.com
    Updated Mar 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2021). Pedestrian Network Data of Hong Kong [Dataset]. https://hub.arcgis.com/datasets/48e295256fd84032a87b27000cea35cd
    Explore at:
    Dataset updated
    Mar 17, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This data contains general information about Pedestrian Network in Hong Kong. Pedestrian Network is a set of 3D line features derived from road features and road furniture from Lands Department and Transport Department. A number of attributes are associated with the pedestrian network such as spatially related street names. Besides, the pedestrian network includes information like wheelchair accessibility and obstacles to facilitate the digital inclusion for the needy. Please refer to this video to learn how to use 3D Pedestrian Network Dataset in ArcGIS Pro to facilitate your transportation analysis.The data was provided in the formats of JSON, GML and GDB by Lands Department and downloaded via GEODATA.GOV.HK website.

    The original data files were processed and converted into an Esri file geodatabase. Wheelchair accessibility, escalator/lift, staircase walking speed and street gradient were used to create and build a network dataset in order to demonstrate basic functions for pedestrian network and routing analysis in ArcMap and ArcGIS Pro. There are other tables and feature classes in the file geodatabase but they are not included in the network dataset, users have to consider the use of information based on their requirements and make necessary configurations. The coordinate system of this dataset is Hong Kong 1980 Grid.

    The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.

    For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Lands Department at https://geodata.gov.hk/gs/download-datadict/201eaaee-47d6-42d0-ac81-19a430f63952.

    For details about the data, source format and terms of conditions of usage, please refer to the website of GEODATA STORE at https://geodata.gov.hk.Dataset last updated on: 2022 Oct

  6. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  7. g

    Freight Analysis Framework (FAF5) Network Links

    • gimi9.com
    • geodata.bts.gov
    • +3more
    Updated Mar 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Freight Analysis Framework (FAF5) Network Links [Dataset]. https://gimi9.com/dataset/data-gov_freight-analysis-framework-faf5-network-links1
    Explore at:
    Dataset updated
    Mar 10, 2022
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Freight Analysis Framework (FAF5) - Network Links dataset was created from 2017 base year data and was published on April 11, 2022 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The FAF (Version 5) Network contains 487,384 link features. All link features are topologically connected to permit network pathbuilding and vehicle assignment using a variety of assignment algorithms. The FAF Link and the FAF Node datasets can be used together to create a network. The link features include all roads represented in prior FAF networks, and all roads in the National Highway System (NHS) and the National Highway Freight Network (NHFN) that are currently open to traffic. Other included links provide connections between intersecting routes, and to select intermodal facilities and all U.S. counties. The network consists of over 588,000 miles of equivalent road mileage. The dataset covers the 48 contiguous States plus the District of Columbia, Alaska, and Hawaii.

  8. d

    Data from: Street Centerlines

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2025). Street Centerlines [Dataset]. https://catalog.data.gov/dataset/street-centerlines-7b228
    Explore at:
    Dataset updated
    Mar 22, 2025
    Dataset provided by
    Lake County Illinois GIS
    Description

    Download In State Plane Projection Here. ** The Street Centerline feature class now follows the NG911/State of Illinois data specifications including a StreetNameAlias table. The download hyperlink above also contains a full network topology for use with the Esri Network Analyst extension ** These street centerlines were developed for a myriad of uses including E-911, as a cartographic base, and for use in spatial analysis. This coverage should include all public and selected private roads within Lake County, Illinois. Roads are initially entered using recorded documents and then later adjusted using current aerial photography. This dataset should satisfy National Map Accuracy Standards for a 1:1200 product. These centerlines have been provided to the United States Census Bureau and were used to conflate the TIGER road features for Lake County. The Census Bureau evaluated these centerlines and, based on field survey of 109 intersections, determined that there is a 95% confidence level that the coordinate positions in the centerline dataset fall within 1.9 meters of their true ground position. The fields PRE_DIR, ST_NAME, ST_TYPE and SUF_DIR are formatted according to United States Postal Service standards. Update Frequency: This dataset is updated on a weekly basis.

  9. g

    SDG 11.2.1, Proportion of Population that has Convenient Access to Public...

    • irelandsdg.geohive.ie
    Updated Mar 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Goals, Ireland (2019). SDG 11.2.1, Proportion of Population that has Convenient Access to Public Transport, Settlements, 2016, Ireland, CSO, NTA & OSi [Dataset]. https://irelandsdg.geohive.ie/datasets/sdg-11-2-1-proportion-of-population-that-has-convenient-access-to-public-transport-settlements-2016-ireland-cso-nta-osi/geoservice
    Explore at:
    Dataset updated
    Mar 15, 2019
    Dataset authored and provided by
    Sustainable Development Goals, Ireland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer was developed by the Central Statistics Office and represents the percentage of Census 2016 population living in settlements of 20,000 persons or more by sex, age and disability who live within 500 metres of a public transport stop.The methodology for this indicator is as follows: The coordinates of all public transport stops (Irish Rail, Luas, Dublin Bus and Bus Eireann) were downloaded from the Transport for Ireland website, link to data. Using the road network from the OSi National Map and the ArcGIS Network Analyst tool the shortest distance path was calculated for each dwelling enumerated in the 2016 census to the nearest public transport stop. The resulting output was merged with the main Census of Population 2016 dataset to identify all persons who resided within 500 metres proximity of their nearest public transport stop and to get the relevant breakdowns of the population.Only population within large settlements (e.g. 20,000 or more) were in scope as the metadata for 11.2.1 makes reference to persons having access to public transport facilities with frequent services. The data published for this indicator is based upon the assumption that large settlements would have a greater likelihood of pubic transport services operating on a regular basis during peak times each day.

  10. a

    Supermarket Access Map - AL

    • uscssi.hub.arcgis.com
    Updated Nov 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2020). Supermarket Access Map - AL [Dataset]. https://uscssi.hub.arcgis.com/maps/3d50a1f4de844c85b691db7b96053b8a
    Explore at:
    Dataset updated
    Nov 11, 2020
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Supermarkets are one of the most popular and convenient ways in which Americans gain access to healthy food, such as fresh meat and fish, or fresh fruits and vegetables. There are various ways in which people gain access to supermarkets. People in the suburbs drive to supermarkets and load up the car with many bags of food. People in cities depend much more on walking to the local store, or taking a bus or train.This map came about after asking a simple question: how many Americans live within a reasonable walk or drive to a supermarket?In this case, "reasonable" was defined as a 10 minute drive, or a 1 mile walk. The ArcGIS Network Analyst extension performed the calculations on streets data from StreetMap Premium, and the ArcGIS Spatial Analyst extension created a heat map of the walkable access and drivable access to supermarkets.The green dots represent populations in poverty who live within one mile of a supermarket. The red dots represent populations in poverty who live beyond a one mile walk to a supermarket, but may live within a 10 minute drive...which presumes they have access to a car or public transit. The grey dots represent the total population in a given area.This is an excellent map to use as backdrop to show how people are improving access to healthy food in their community. Open this map in ArcGIS Pro or ArcGIS Online to use it as a backdrop to your local analysis work. Or open it in ArcGIS Explorer to add your favorite farmers' market, CSA, or transit line -- then share that map via Facebook, Twitter or email.This map shows data for the entire U.S. The supermarkets included in the analysis have annual sales of $1 million or more.Data source: see this map package.

  11. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  12. f

    Indicators X1 –X3 for individual regions of the Czech Republic in 2018, * in...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iveta Vrabková; Izabela Ertingerová; Pavel Kukuliač (2023). Indicators X1 –X3 for individual regions of the Czech Republic in 2018, * in thousands. [Dataset]. http://doi.org/10.1371/journal.pone.0244991.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Iveta Vrabková; Izabela Ertingerová; Pavel Kukuliač
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Czechia
    Description

    Indicators X1 –X3 for individual regions of the Czech Republic in 2018, * in thousands.

  13. r

    Bicycle Network

    • researchdata.edu.au
    Updated Mar 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.vic.gov.au (2023). Bicycle Network [Dataset]. https://researchdata.edu.au/bicycle-network/2295975
    Explore at:
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    data.vic.gov.au
    Description

    This dataset contains a simplified network representation of bike paths across City of Melbourne.
    The dataset can be used to create a digital bicycle network with route modelling capabilities that integrated existing bicycle infrastructure. The network has been created to be used with ArcGIS network analyst. The resulting network was connected to the City of Melbourne property layer through centroids created for this project:

    The network can assist in multiple modelling tasks including catchment analysis and route analysis. The download is a zip file containing compressed .json files

    Please see the metadata attached for further information.

  14. National Hydrography Dataset Plus Version 2.1

    • geodata.colorado.gov
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://geodata.colorado.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Coordinate System: Web Mercator Auxiliary Sphere Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinksSource: EPA and USGSPublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  15. People in Poverty with Low Access

    • legacy-cities-lincolninstitute.hub.arcgis.com
    Updated Oct 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2017). People in Poverty with Low Access [Dataset]. https://legacy-cities-lincolninstitute.hub.arcgis.com/datasets/UrbanObservatory::people-in-poverty-with-low-access
    Explore at:
    Dataset updated
    Oct 26, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Supermarkets are one of the most popular and convenient ways in which Americans gain access to healthy food, such as fresh meat and fish, or fresh fruits and vegetables. There are various ways in which people gain access to supermarkets. People in the suburbs drive to supermarkets and load up the car with many bags of food. People in cities depend much more on walking to the local store, or taking a bus or train.This map came about after asking a simple question: how many Americans live within a reasonable walk or drive to a supermarket?In this case, "reasonable" was defined as a 10 minute drive, or a 1 mile walk. The ArcGIS Network Analyst extension performed the calculations on streets data from StreetMap Premium, and the ArcGIS Spatial Analyst extension created a heat map of the walkable access and drivable access to supermarkets.The green dots represent populations in poverty who live within one mile of a supermarket. The red dots represent populations in poverty who live beyond a one mile walk to a supermarket, but may live within a 10 minute drive...which presumes they have access to a car or public transit. The grey dots represent the total population in a given area.This is an excellent map to use as backdrop to show how people are improving access to healthy food in their community. Open this map in ArcGIS Pro or ArcGIS Online to use it as a backdrop to your local analysis work. Or open it in ArcGIS Explorer to add your favorite farmers' market, CSA, or transit line -- then share that map via Facebook, Twitter or email. See this web map for a map with a popup layer.This map shows data for the entire U.S. The supermarkets included in the analysis have annual sales of $1 million or more.Data source: see this map package.

  16. Geographic Information System (GIS) In Telecom Sector Market Analysis APAC,...

    • technavio.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System (GIS) In Telecom Sector Market Analysis APAC, North America, Europe, South America, Middle East and Africa - China, US, UK, Canada, Italy - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/gis-market-in-telecom-sector-industry-analysis
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United Kingdom, United States
    Description

    Snapshot img

    GIS In Telecom Sector Market Size 2024-2028

    The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.

    Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
    However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
    

    What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
    Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
    

    How is this GIS In Telecom Sector Industry segmented and which is the largest segment?

    The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      APAC
    
        China
    
    
      North America
    
        Canada
        US
    
    
      Europe
    
        UK
        Italy
    
    
      South America
    
    
    
      Middle East and Africa
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
    GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
    

    Get a glance at the market report of share of variou

  17. f

    Actual distance travelled by participants (n = 404) to the health facility...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thandi Kapwata; Natashia Morris; Angela Campbell; Thuli Mthiyane; Primrose Mpangase; Kristin N. Nelson; Salim Allana; James C. M. Brust; Pravi Moodley; Koleka Mlisana; Neel R. Gandhi; N. Sarita Shah (2023). Actual distance travelled by participants (n = 404) to the health facility at which XDR TB was diagnosed, KwaZulu-Natal, 2011–2014. [Dataset]. http://doi.org/10.1371/journal.pone.0181797.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Thandi Kapwata; Natashia Morris; Angela Campbell; Thuli Mthiyane; Primrose Mpangase; Kristin N. Nelson; Salim Allana; James C. M. Brust; Pravi Moodley; Koleka Mlisana; Neel R. Gandhi; N. Sarita Shah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    KwaZulu-Natal
    Description

    Actual distance travelled by participants (n = 404) to the health facility at which XDR TB was diagnosed, KwaZulu-Natal, 2011–2014.

  18. B

    Data from: BC Transit Routes for Victoria, Whistler, Pemberton, Squamish and...

    • borealisdata.ca
    • abacus.library.ubc.ca
    • +1more
    Updated Mar 4, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Lesack (2019). BC Transit Routes for Victoria, Whistler, Pemberton, Squamish and Kelowna, 10 February 2012 [Dataset]. http://doi.org/10.5683/SP2/ZCUNIU
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 4, 2019
    Dataset provided by
    Borealis
    Authors
    Paul Lesack
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Whistler, British Columbia, Squamish, Victoria, Kelowna, Pemberton, Canada
    Description

    BC Transit routes for Victoria, Whistler, Pemberton Local and Commuter, Squamish Commuter and Kelowna. The routes were created from the Google transit feed (GTFS) and ArcGIS Network Analyst. As no route shape information was available from the feed, the shape of the route was extrapolated from the road network and layout of transit stops. The transit routes were not verified as no maps are available. Although routes were calculated as carefully as possible, this data set carries no guarantee of accuracy beyond the information included in the Google transit feed.

  19. Operations & Network Analysis - Initiatives

    • hub.arcgis.com
    Updated Oct 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nevada Department of Transportation (2020). Operations & Network Analysis - Initiatives [Dataset]. https://hub.arcgis.com/documents/0b635753556443ecaedc0bb69d961f35
    Explore at:
    Dataset updated
    Oct 22, 2020
    Dataset authored and provided by
    Nevada Department of Transportationhttps://www.dot.nv.gov/
    Description

    DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the ArcGIS Hub application. To make changes to this page, please visit https://NDOT.hub.arcgis.com:/overview/edit.

  20. Area - Small Scale

    • giscommons-countyplanning.opendata.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +5more
    Updated Mar 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2024). Area - Small Scale [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/geoplatform::area-small-scale-2
    Explore at:
    Dataset updated
    Mar 20, 2024
    Dataset provided by
    Authors
    GeoPlatform ArcGIS Online
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    Abstract: The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Use the metadata link, http://nhdgeo.usgs.gov/metadata/nhd_high.htm, for additional information. Purpose: The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri China (Hong Kong) Ltd. (2018). Road Network Data of Hong Kong [Dataset]. https://hub.arcgis.com/datasets/188a2dfc78bd44d19fa99edfe87b20e7
Organization logo

Road Network Data of Hong Kong

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 22, 2018
Dataset provided by
Esrihttp://esri.com/
Authors
Esri China (Hong Kong) Ltd.
Area covered
Hong Kong
Description

The Intelligent Road Network dataset provided by the Transport Department includes traffic directions, turning restrictions at road junctions, stopping restrictions, on-street parking spaces and other road traffic data for supporting the development of intelligent transport system, fleet management system and car navigation etc. by the public.

Esri China (HK) has prepared this File Geodatabase containing a Network Dataset for the Intelligent Road Network to support Esri GIS users to use the dataset in ArcGIS Pro without going through long configuration steps. Please refer to this guideline to use the Road Network Dataset in ArcGIS Pro for routing analysis. This network dataset has been configured and deployed the following restrictions:

Speed LimitTurnIntersectionTraffic FeaturesPedestrian ZoneTraffic Sign of ProhibitionVehicle RestrictionThe coordinate system of this dataset is Hong Kong 1980 Grid.The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Transport Department at https://data.gov.hk/en-data/dataset/hk-td-tis_15-road-network-v2.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.Dataset last updated on: 2021 July

Search
Clear search
Close search
Google apps
Main menu