100+ datasets found
  1. National Weather Service Wind Forecast

    • hub.arcgis.com
    • openenergyhub.ornl.gov
    • +2more
    Updated Jun 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Wind Forecast [Dataset]. https://hub.arcgis.com/maps/33820e818ebc4661b01bcd47e5f2a57e
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the wind forecast over the next 72 hours across the contiguous United States, in 3 hour increments, including wind direction, wind gust, and sustained wind speed.Zoom in on the Map to refine the detail for a desired area. The Wind Gust is the maximum 3-second wind speed (in mph) forecast to occur within a 2-minute interval within a 3 hour period at a height of 10 meters Above Ground Level (AGL). The Wind Speed is the expected sustained wind speed (in mph) for the indicated 3 hour period at a height of 10 meters AGL. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Wind Speed Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWind Gust Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wgust.binWind Direction Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wdir.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.Alternate SymbologyFeature Layer item that uses Vector Marker Symbols to render point arrows, easily altered by user. The color palette uses the Beaufort Scale for Wind Speed. https://www.arcgis.com/home/item.html?id=45cd2d4f5b9a4f299182c518ffa15977 This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  2. National Weather Service Precipitation Forecast

    • disasterpartners.org
    • atlas.eia.gov
    • +9more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service Precipitation Forecast [Dataset]. https://www.disasterpartners.org/maps/f9e9283b9c9741d09aad633f68758bf6
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  3. NOAA Infrared Satellite Imagery

    • keep-cool-global-community.hub.arcgis.com
    • uneca.africageoportal.com
    • +8more
    Updated Jun 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2019). NOAA Infrared Satellite Imagery [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/4e681ff69e0e4b90866bb6a2e03db24a
    Explore at:
    Dataset updated
    Jun 26, 2019
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Metadata: NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b RadiancesMore information about this imagery can be found here.This satellite imagery combines data from the NOAA GOES East and West satellites and the JMA Himawari satellite, providing full coverage of weather events for most of the world, from the west coast of Africa west to the east coast of India. The tile service updates to the most recent image every 10 minutes at 1.5 km per pixel resolution.The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.The Advanced Baseline Imager (ABI) instrument samples the radiance of the Earth in sixteen spectral bands using several arrays of detectors in the instrument’s focal plane. Single reflective band ABI Level 1b Radiance Products (channels 1 - 6 with approximate center wavelengths 0.47, 0.64, 0.865, 1.378, 1.61, 2.25 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for visible and near-infrared (IR) bands. Single emissive band ABI L1b Radiance Products (channels 7 - 16 with approximate center wavelengths 3.9, 6.185, 6.95, 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for IR bands. Detector samples are compressed, packetized and down-linked to the ground station as Level 0 data for conversion to calibrated, geo-located pixels (Level 1b Radiance data). The detector samples are decompressed, radiometrically corrected, navigated and resampled onto an invariant output grid, referred to as the ABI fixed grid.Data source and merge technique provided by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin- Madison.

  4. d

    NOAA ENC Direct to GIS

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated May 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). NOAA ENC Direct to GIS [Dataset]. https://catalog.data.gov/dataset/noaa-enc-direct-to-gis1
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    NOAA's Electronic Navigational Charts (NOAA ENCs) have been developed to support the marine transportation infrastructure and coastal management. The NOAA ENCs are in S-57, a data standard developed by the International Hydrographic Organization (IHO) to be used for the exchange of digital hydrographic data. NOAA ENCs can be used in Geographic Information Systems, (GIS) allowing for broader public access. Many GIS's, however cannot read an ENC's native S-57 format to address this problem. NOAA's ENC Direct to GIS web portal provides comprehensive access to display, query, and download all available large scale NOAA ENC data in a variety of GIS/CAD formats for non-navigational purposes using Internet mapping service technology. Nautical chart features contained within an NOAA ENC provide a detailed representation of the U.S. coastal and marine environment. This data includes coastal topography, bathymetry, landmarks, geographic place names and marine boundaries. Features in an NOAA ENC are limited in that they only represent the geographic region that is depicted in that particular NOAA ENC. By aggregating nautical features from all NOAA ENCs in the creation of GIS data, a contiguous depiction of the U.S coastal and marine environment is achieved.

  5. NOAA ENC Direct to GIS: Dredged Area

    • fisheries.noaa.gov
    • catalog.data.gov
    htm
    Updated Jan 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Coast Survey (2001). NOAA ENC Direct to GIS: Dredged Area [Dataset]. https://www.fisheries.noaa.gov/inport/item/39971
    Explore at:
    htmAvailable download formats
    Dataset updated
    Jan 1, 2001
    Dataset provided by
    Office of Coast Survey
    Time period covered
    Jul 11, 2001 - Jul 11, 2125
    Area covered
    United States, U.S. Exclusive Economic Zone, United States,
    Description

    NOAA's ENC Direct to GIS web portal provides comprehensive access to display, query, and download all available NOAA ENC data in a variety of GIS/CAD formats for non-navigational purposes using Internet mapping service technology. An area of the bottom of a body of water which has been deepened by dredging.(IHO Dictionary, S-32, 5th Edition, 1462)

  6. National Weather Service 72 Hour Temperature Forecast

    • hub.arcgis.com
    • resilience.climate.gov
    • +3more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service 72 Hour Temperature Forecast [Dataset]. https://hub.arcgis.com/maps/1c8e963bc94c4026bc67488e954d1cb7
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the Apparent and Expected Air Temperature forecast over the next 72 hours across the Contiguous United States, Alaska, Guam, Hawaii, and Puerto Rico in 3 hour increments. The original raster data has been processed into 1-degree contours.Two layers are included: apparent and expected temperature, both include a Time Series set to a 3-hour time interval. The apparent temperature is the perceived (or feels like) temperature derived from either a combination of temperature and wind (wind chill) or temperature and humidity (heat index) for the indicated hour. When the temperature at a particular grid point falls to 50 °F or less, wind chill will be used for that point for the apparent temperature. When the temperature at a grid point rises above 80 °F, the heat index will be used for apparent temperature.
    Between 51 and 80 °F, the apparent temperature will be the ambient air temperature.The expected temperature is the forecasted ambient air temperature in °F.See sister data product for Min and Max Daily TemperaturesRevisionsApr 21, 2022: Added Forecast Period Number 'Interval' field for an alternate query method to the Timeline of data. Disabled Time Series by default to improve initial Map Viewer exprience and added a Filter for 'interval = 1' to display initial forecast time data (current time period).Apr 22, 2022: Set 'Apparent Temperature' layer visibility to True by default, so content is visible when initially viewed.Sep 1, 2022: Updated renderer Arcade logic on layers to correctly symbolize on values greater than 120 and less than -60 degrees.DetailService Data update interval is: HourlyWhere is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Apparent Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.apt.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.apt.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.apt.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.apt.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.apt.binExpected Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.temp.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.temp.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.temp.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.temp.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.temp.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This feature service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation or add a Filter using the 'Forecast Period Number'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page.

  7. d

    NOAA ESRI Grid - seafloor hardbottom occurrence predictions model in New...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). NOAA ESRI Grid - seafloor hardbottom occurrence predictions model in New York offshore planning area from Biogeography Branch [Dataset]. https://catalog.data.gov/dataset/noaa-esri-grid-seafloor-hardbottom-occurrence-predictions-model-in-new-york-offshore-planning-a1
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Area covered
    New York
    Description

    This dataset represents hard bottom occurrence predictions from a spatial model developed for the New York offshore spatial planning area. This model builds upon the data compilation and analytical framework laid out by Greene et al. (2010). The model also provides a continuous gridded prediction surface representing the likelihood of hard bottom occurrence.

  8. US Federal Georegulations - Marine Debris Research, Prevention and Reduction...

    • koordinates.com
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US National Oceanic and Atmospheric Administration (NOAA), US Federal Georegulations - Marine Debris Research, Prevention and Reduction Act [Dataset]. https://koordinates.com/layer/20559-us-federal-georegulations-marine-debris-research-prevention-and-reduction-act/
    Explore at:
    pdf, dwg, geodatabase, mapinfo mif, shapefile, mapinfo tab, kml, csv, geopackage / sqliteAvailable download formats
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    US National Oceanic and Atmospheric Administration (NOAA)
    Area covered
    United States,
    Description

    The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration’s (NOAA) Marine Debris Program. The mission of the NOAA Marine Debris Program is to use research, prevention, and reduction activities to investigate and solve problems that stem from marine debris, in order to protect and conserve our Nation’s marine environment and ensure navigation safety. The Act outlines three central program components for the MDP to undertake: 1) mapping, identification, impact assessment, removal, and prevention; 2) reducing and preventing gear loss; and 3) outreach.

    © MarineCadastre.gov This layer is a component of Federal Georegulations.

    These data represent the unofficial boundaries of the respective federal georegulations found herein, as of 2016. Learn how these specific boundaries were created and find source material used, by referencing the metadata of each federal georegulation found here: https://coast.noaa.gov/data/Documents/Metadata/MarineCadastre/harvest/. When investigating geo-regulatory boundaries near the boundary edges, users should consult the most up to date applicable jurisdictional boundaries from all respective authoritative sources. To determine other federal georegulations that apply to an area, please reference the Federal Georegulations Identification service found here: https://coast.noaa.gov/arcgis/rest/services/MarineCadastre/FederalGeoregulationsIdentification/MapServer. These data are intended for coastal and ocean use planning and do not serve as a legal delineation of any law.

    This service is maintained by National Oceanic and Atmospheric Administration (NOAA) Office for Coastal Management (OCM), in partnership with Department of the Interior (DOI) Bureau of Ocean Energy Management (BOEM). More information about this product can be found at www.MarineCadastre.gov. This map service presents spatial information about MarineCadastre.gov services across the United States and Territories in the Web Mercator projection. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).

    © NOAA Office for Coastal Management

  9. National Weather Service Smoke Forecast

    • data-napsg.opendata.arcgis.com
    • resilience.climate.gov
    • +15more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service Smoke Forecast [Dataset]. https://data-napsg.opendata.arcgis.com/datasets/a98fd08751a5480c898b7cebe38807f4
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  10. d

    NOAA ESRI Grid - predictions of relative uncertainty for sediment size in...

    • catalog.data.gov
    • gimi9.com
    • +3more
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). NOAA ESRI Grid - predictions of relative uncertainty for sediment size in the New York offshore planning area by NOAA Biogeography Branch [Dataset]. https://catalog.data.gov/dataset/noaa-esri-grid-predictions-of-relative-uncertainty-for-sediment-size-in-the-new-york-offshore-p1
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Area covered
    New York
    Description

    This dataset represents sediment size prediction uncertainty from a sediment spatial model developed for the New York offshore spatial planning area. The model also includes spatially-explicit mean grain size estimates represented in another raster dataset. The predictive model of mean grain size was developed building upon the data compilation and analytical framework laid out by Goff et al. (2008).

  11. d

    NOAA NHC - Irma Storm Track - Best Track + Advisories

    • dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Hurricane Center (NHC) (2022). NOAA NHC - Irma Storm Track - Best Track + Advisories [Dataset]. http://doi.org/10.4211/hs.aa5c9982a4694a19be2fa9299b78e5ca
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    NOAA National Hurricane Center (NHC)
    Area covered
    Description

    The NOAA National Hurricane Center (NHC) publishes advisory bulletins with named storm conditions and expectations, see [1]. We have also downloaded shapefiles for eighty-four 5-day forecasts (published from August 30 to September 11) of track line, predicted points, ensemble forecasts envelope, and affected shoreline where applicable [2]. NOAA also publishes the best track for major storms [3]. The "best track" is a smoothed version of the advisories track. Web services are also provided by NHC for the advisory points and lines [4] [5]. Another user has constructed the Irma track (shapefile) from the NHC advisory bulletins [6].

    FEMA also posts windfield data, including peak wind gust and contours [7]. See FEMA disaster webpage [8] for map and list of counties receiving disaster declarations (map pdf available for download from this page)

    References [1] NOAA NHC - Irma storm advisories [http://www.nhc.noaa.gov/archive/2017/IRMA.shtml]
    [2] NOAA NHC - Irma 5-day forecasts [https://www.nhc.noaa.gov/gis/archive_forecast_results.php?id=al11&year=2017&name=Hurricane%20IRMA] [3] NOAA NHC - best tracks for 2017 storms [https://www.nhc.noaa.gov/data/tcr/index.php?season=2017&basin=atl] [4] NOAA NHC - Irma advisory points web service [https://services.arcgis.com/XSeYKQzfXnEgju9o/ArcGIS/rest/services/The_2017_Atlantic_Hurricane_season_(to_October_16th)/FeatureServer/1] [5] NOAA NHC - Irma advisory lines web service [https://services.arcgis.com/XSeYKQzfXnEgju9o/ArcGIS/rest/services/The_2017_Atlantic_Hurricane_season_(to_October_16th)/FeatureServer/6] [6] Irma Advisories Track, compiled by David Tarboton [https://www.hydroshare.org/resource/546fa3feeaf242fc8aabf9fe05ab454c/] [7] FEMA public download site for Hurricane Irma 2017 [https://data.femadata.com/NationalDisasters/HurricaneIrma/] [8] FEMA Disaster Declarations and related links [https://www.fema.gov/disaster/4337]

  12. d

    NOAA ESRI Shapefile - sediment composition class predictions in New York...

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). NOAA ESRI Shapefile - sediment composition class predictions in New York offshore planning area from Biogeography Branch [Dataset]. https://catalog.data.gov/dataset/noaa-esri-shapefile-sediment-composition-class-predictions-in-new-york-offshore-planning-area-f1
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Area covered
    New York
    Description

    This dataset represents sediment composition class predictions from a sediment spatial model developed for the New York offshore spatial planning area. The predictive spatial model of mean grain size was developed building upon the data compilation and analytical framework laid out by Goff et al. (2008) and Poppe et al. (2005).

  13. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of Mid Shelf Reef, US Virgin...

    • fisheries.noaa.gov
    • datadiscoverystudio.org
    • +2more
    tiff
    Updated Mar 1, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Battista (2006). NOAA ESRI Geotiff- 1m Multibeam Bathymetry of Mid Shelf Reef, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 [Dataset]. https://www.fisheries.noaa.gov/inport/item/38827
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Mar 1, 2006
    Dataset provided by
    National Centers for Coastal Ocean Science
    Authors
    Tim Battista
    Time period covered
    Feb 1, 2005 - Feb 12, 2005
    Area covered
    Description

    This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the Mid Shelf Reef south of St. Thomas, US Virgin Islands.NOAA's NOS/NCCOS/CCMA Biogeography Team, in collaboration with NOAA vessel Nancy Foster and territory, federal, and private sector partners, acquired multibeam bathymetry data in the US Virgin Islands from 2/1/05 to 2/12/05. Data was acquired with...

  14. US Hot Springs

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US National Oceanic and Atmospheric Administration (NOAA) (2018). US Hot Springs [Dataset]. https://koordinates.com/layer/97292-us-hot-springs/
    Explore at:
    geopackage / sqlite, kml, geodatabase, dwg, csv, mapinfo tab, mapinfo mif, shapefile, pdfAvailable download formats
    Dataset updated
    Sep 18, 2018
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    US National Oceanic and Atmospheric Administration (NOAA)
    Area covered
    United States,
    Description

    This layer is sourced from gis.ngdc.noaa.gov.

    The Thermal Springs data available online from NOAA's National Centers for Environmental Information (NCEI) contains 1661 hot springs for the United States. The content was originally published in 1980, and has not been updated since.

    Compiled by George W. Berry, Paul J. Grimm, and Joy A. Ikelman.
    NOAA KGRD No. 12 (3 MB PDF)

    © NOAA National Centers for Environmental Information

  15. A

    Recent Weather Radar Imagery

    • data.amerigeoss.org
    esri rest, html +1
    Updated Jul 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Recent Weather Radar Imagery [Dataset]. https://data.amerigeoss.org/dataset/recent-weather-radar-imagery
    Explore at:
    ogc wms, esri rest, htmlAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Map Information

    This nowCOAST time-enabled map service provides maps of NOAA/National Weather Service RIDGE2 mosaics of base reflectivity images across the Continental United States (CONUS) as well as Puerto Rico, Hawaii, Guam and Alaska with a 2 kilometer (1.25 mile) horizontal resolution. The mosaics are compiled by combining regional base reflectivity radar data obtained from 158 Weather Surveillance Radar 1988 Doppler (WSR-88D) also known as NEXt-generation RADar (NEXRAD) sites across the country operated by the NWS and the Dept. of Defense and also from data from Terminal Doppler Weather Radars (TDWR) at major airports. The colors on the map represent the strength of the energy reflected back toward the radar. The reflected intensities (echoes) are measured in dBZ (decibels of z). The color scale is very similar to the one used by the NWS RIDGE2 map viewer. The radar data itself is updated by the NWS every 10 minutes during non-precipitation mode, but every 4-6 minutes during precipitation mode. To ensure nowCOAST is displaying the most recent data possible, the latest mosaics are downloaded every 5 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    Reflectivity is related to the power, or intensity, of the reflected radiation that is sensed by the radar antenna. Reflectivity is expressed on a logarithmic scale in units called dBZ. The "dB" in the dBz scale is logarithmic and is unit less, but is used only to express a ratio. The "z" is the ratio of the density of water drops (measured in millimeters, raised to the 6th power) in each cubic meter (mm^6/m^3). When the "z" is large (many drops in a cubic meter), the reflected power is large. A small "z" means little returned energy. In fact, "z" can be less than 1 mm^6/m^3 and since it is logarithmic, dBz values will become negative, as often in the case when the radar is in clear air mode and indicated by earth tone colors. dBZ values are related to the intensity of rainfall. The higher the dBZ, the stronger the rain rate. A value of 20 dBZ is typically the point at which light rain begins. The values of 60 to 65 dBZ is about the level where 3/4 inch hail can occur. However, a value of 60 to 65 dBZ does not mean that severe weather is occurring at that location. The best reflectivity is lowest (1/2 degree elevation angle) reflectivity scan from the radar. The source of the base reflectivity mosaics is the NWS Southern Region Radar Integrated Display with Geospatial Elements (RIDGE2).

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  16. c

    NOAA Storm Events Database 1950-2021

    • resilience.climate.gov
    • resilience-and-adaptation-information-portal-nationalclimate.hub.arcgis.com
    • +1more
    Updated Jan 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). NOAA Storm Events Database 1950-2021 [Dataset]. https://resilience.climate.gov/maps/arcgis-content::noaa-storm-events-database-1950-2021
    Explore at:
    Dataset updated
    Jan 14, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    When severe weather occurs in the United States, there are networks of humans and sensors that observe and report the events and their details to the National Weather Service. These storm reports are aggregated and archived by NOAA's National Centers for Environmental Information. With over 1.7 million records over 70 years, the Storm Events Database is the most comprehensive, official record of severe weather in the U.S. This layer is a simplified version of the full database, providing information on:DateLocationEvent TypeNumber of injuries and deathsEstimated property damageEvent/episode summariesUse the NOAA Storm Events Database Explorer ArcGIS Dashboard for a more interactive data exploration. Known Data Quality Issue: approximately 650,000 of the 1.71 million features do not include latitude or longitude values in the original NOAA data source. To address these issues in the 2021 data update, the following has been done:Use the county and state fields the geolocate unknown locations using the ArcGIS World Geocoding Service. These events will all appear at the county centroid. There are a total of 646,039 records in this category. The field LatLon Known describes if an original geolocation was provided (Yes) or if it was generated per above (No).Marine (CZ_Type = M) locations without a known lat/lon were not included. There are a total of 3,987 records in this category. For related archives of weather information, please see the Windstorm Points and Paths, Hailstorm Points and Paths, and Historical Hurricane layers.Data caveatsPer NCEI, the "National Weather Service receives their information from a variety of sources, which include but are not limited to: county, state and federal emergency management officials, local law enforcement officials, skywarn spotters, NWS damage surveys, newspaper clipping services, the insurance industry and the general public, among others." However, these sources are all population-dependent, and many severe weather events are assumed to not be reported in areas of low population. Not only does this bias occur across space, but also across time as many areas had lower populations in the mid-20th Century, and more advanced networks and reporting methods have evolved with technology.

  17. A

    Boundary

    • data.amerigeoss.org
    csv, esri rest +5
    Updated Jul 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Boundary [Dataset]. https://data.amerigeoss.org/dataset/boundary
    Explore at:
    ogc wms, csv, zip, kml, esri rest, html, geojsonAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Map Information

    This nowCOAST time-enabled map service provides maps of NOAA/National Weather Service RIDGE2 mosaics of base reflectivity images across the Continental United States (CONUS) as well as Puerto Rico, Hawaii, Guam and Alaska with a 2 kilometer (1.25 mile) horizontal resolution. The mosaics are compiled by combining regional base reflectivity radar data obtained from 158 Weather Surveillance Radar 1988 Doppler (WSR-88D) also known as NEXt-generation RADar (NEXRAD) sites across the country operated by the NWS and the Dept. of Defense and also from data from Terminal Doppler Weather Radars (TDWR) at major airports. The colors on the map represent the strength of the energy reflected back toward the radar. The reflected intensities (echoes) are measured in dBZ (decibels of z). The color scale is very similar to the one used by the NWS RIDGE2 map viewer. The radar data itself is updated by the NWS every 10 minutes during non-precipitation mode, but every 4-6 minutes during precipitation mode. To ensure nowCOAST is displaying the most recent data possible, the latest mosaics are downloaded every 5 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    Reflectivity is related to the power, or intensity, of the reflected radiation that is sensed by the radar antenna. Reflectivity is expressed on a logarithmic scale in units called dBZ. The "dB" in the dBz scale is logarithmic and is unit less, but is used only to express a ratio. The "z" is the ratio of the density of water drops (measured in millimeters, raised to the 6th power) in each cubic meter (mm^6/m^3). When the "z" is large (many drops in a cubic meter), the reflected power is large. A small "z" means little returned energy. In fact, "z" can be less than 1 mm^6/m^3 and since it is logarithmic, dBz values will become negative, as often in the case when the radar is in clear air mode and indicated by earth tone colors. dBZ values are related to the intensity of rainfall. The higher the dBZ, the stronger the rain rate. A value of 20 dBZ is typically the point at which light rain begins. The values of 60 to 65 dBZ is about the level where 3/4 inch hail can occur. However, a value of 60 to 65 dBZ does not mean that severe weather is occurring at that location. The best reflectivity is lowest (1/2 degree elevation angle) reflectivity scan from the radar. The source of the base reflectivity mosaics is the NWS Southern Region Radar Integrated Display with Geospatial Elements (RIDGE2).

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  18. NOAA/WDS Paleoclimatology - Ray and Adams 2001 GIS-based Vegetation Map of...

    • catalog.data.gov
    Updated Mar 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact); NOAA World Data Service for Paleoclimatology (Point of Contact) (2025). NOAA/WDS Paleoclimatology - Ray and Adams 2001 GIS-based Vegetation Map of the World at the Last Glacial Maximum [Dataset]. https://catalog.data.gov/dataset/noaa-wds-paleoclimatology-ray-and-adams-2001-gis-based-vegetation-map-of-the-world-at-the-last-2
    Explore at:
    Dataset updated
    Mar 1, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    World
    Description

    This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Climate Reconstruction. The data include parameters of climate reconstructions with a geographic location of Global. The time period coverage is from 18000 to 18000 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.

  19. GEBCO Basemap (NOAA NCEI Visualization)

    • hub.arcgis.com
    • data-with-cpaws-nl.hub.arcgis.com
    • +1more
    Updated Apr 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2019). GEBCO Basemap (NOAA NCEI Visualization) [Dataset]. https://hub.arcgis.com/maps/8050bfc4eb4444758f194db95f817184
    Explore at:
    Dataset updated
    Apr 26, 2019
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    A color shaded relief visualization of the General Bathymetric Chart of the Oceans GEBCO_2024 grid, combined with generalized land cover coloration from the Natural Earth 1 dataset. The Natural Earth 1 imagery and lake polygons were obtained from https://naturalearthdata.com. The coastline displayed is from Esri's World Countries dataset.Please also see NOAA/NCEI's layer of GEBCO bathymetric contours.A grayscale version is also available, and see here for a map with both hillshade and contours included.

  20. d

    NOAA ESRI Geotiff- 1m Bathymetry of St. Thomas, US Virgin Islands, 2004, UTM...

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). NOAA ESRI Geotiff- 1m Bathymetry of St. Thomas, US Virgin Islands, 2004, UTM 20 WGS84 [Dataset]. https://catalog.data.gov/dataset/noaa-esri-geotiff-1m-bathymetry-of-st-thomas-us-virgin-islands-2004-utm-20-wgs842
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Area covered
    Saint Thomas, U.S. Virgin Islands
    Description

    This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the south shore of St. Thomas, US Virgin Islands.NOAA's NOS/NCCOS/CCMA Biogeography Team and NOAA/NOS/OCS/HSD personnel, in collaboration with NOAA vessel Nancy Foster and territory, federal, and private sector partners, acquired multibeam bathymetry data in the US Virgin Islands from 2/18/04 to 3/5/04. Data was acquired with a pole-mounted Reson 8101 ER multibeam echosounder (240 kHz) and processed by a NOAA contractor using CARIS HIPS v5.4 software. Data has all correctors applied (attitude, sound velocity) and has been reduced to mean lower low water (MLLW) using final approved tides from NOAA COOPS. Data is in UTM zone 20 north, datum WGS84. The processed CARIS data was used to generate a CARIS BASE surface based on swath angle with footprint size 3*3. An ASCII XYZ file was exported from the BASE surface and opened in ESRI ArcMap 9 as an XY event. Then the ArcToolbox conversion tool 'Feature to Raster', with cell size 1, was used to generate the final ESRI Geotiff. While the project was conducted to meet IHO Order 2 accuracy standards, there is a roll artifact (averaging 0.5m high) in the dataset that the user should take into consideration when performing any analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2019). National Weather Service Wind Forecast [Dataset]. https://hub.arcgis.com/maps/33820e818ebc4661b01bcd47e5f2a57e
Organization logo

National Weather Service Wind Forecast

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 7, 2019
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This map displays the wind forecast over the next 72 hours across the contiguous United States, in 3 hour increments, including wind direction, wind gust, and sustained wind speed.Zoom in on the Map to refine the detail for a desired area. The Wind Gust is the maximum 3-second wind speed (in mph) forecast to occur within a 2-minute interval within a 3 hour period at a height of 10 meters Above Ground Level (AGL). The Wind Speed is the expected sustained wind speed (in mph) for the indicated 3 hour period at a height of 10 meters AGL. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Wind Speed Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWind Gust Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wgust.binWind Direction Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wdir.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.Alternate SymbologyFeature Layer item that uses Vector Marker Symbols to render point arrows, easily altered by user. The color palette uses the Beaufort Scale for Wind Speed. https://www.arcgis.com/home/item.html?id=45cd2d4f5b9a4f299182c518ffa15977 This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

Search
Clear search
Close search
Google apps
Main menu