Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Click here to open the ArcGIS Online Map Viewer and work through the examples shown belowTo add data to ArcGIS Online we reccomend that you log in. For full functionality use a free schools subscription, or if this is not possible you can use a free public account which will have reduced functionality.
Scenario-based activities using specific tools, built by Esri and users. Explore the lessons, then filter for desired tools and level. At the bottom of the front page, one can request for free a 60-day login to the Learn Org, to use with their lessons ... but membership in the Learn Org is for adults only, as the process requires the user to provide first name, last name, and email address. K12 students should ONLY use their assigned school Org login in order to prevent sharing personally identifiable information. K12 students should therefore only be exploring lessons that engage software in the School Bundle -- ArcGIS Online (includes Survey123, Collector, Dashboard, Story Maps, Web AppBuilder), Community Analyst, or ArcGIS Pro or ArcMap.Go to the Learn site at http://learn.arcgis.com.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineFind Mount Everest and save the 3D map so that it opens with an amazing view of the mountainShare your 3D map with a friend or colleague and get some feed back
Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineSearch for layers in ArcGIS Online:
Lesson in ArcGIS Online to help explore the effects if a Large Earthquake on the Alpine Fault in New Zealand. This lesson can be used to supplement existing materials you may already be teaching in the classroom.It is not designed for assessment.This lesson requires students to have a username and password for the schools ArcGIS Online subscription.For assistance with adding your students into the schools ArcGIS Online subscription or to order a schools ArcGIS Online subscription free of charge contact gisinschools@eagle.co.nzThumbnail NASA-Johnson Space Center Reference: International Space Station Crew Earth Observations Experiment and the Image Science & Analysis Group, ISS006-E-39488
THE GEOINQUIRIES™ COLLECTION FOR GOVERNMENT AND CIVICShttp://www.esri.com/geoinquiriesThe Esri GeoInquiry™ collection for Government and Civics contains 20 free, web-mapping activities that correspond and extend map-based concepts in leading middle school Government and Civics science textbooks. The activities use a standard inquiry-based instructional model, require about 15 minutes for a teacher to deliver, and are device agnostic. The activities harmonize with the C3 Framework. Fifteen activities are Level 1, requiring no login. Five activities are Level 2, requiring a login and use of the analysis tools in ArcGIS Online.All Government and Civics GeoInquiries™ can be found at: http://esriurl.com/govGeoInquiries All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries
Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.
Lesson in ArcGIS Online to help students to develop an understanding of the spatial distribution seamounts around New Zealand. This lesson can be used to supplement existing materials you may already be teaching in the classroom especially with the new NCEA Geography 1.1 standard.It is not designed for assessment.This lesson requires students to have a username and password for the schools ArcGIS Online subscription.For assistance with adding your students into the schools ArcGIS Online subscription or to order a schools ArcGIS Online subscription free of charge contact gisinschools@eagle.co.nz
Lesson in ArcGIS Online to help determine what rural land could be successfully converted to Forestry without impacting productive farmland. This lesson can be used to supplement existing materials you may already be teaching in the classroom.It is not designed for assessment.This lesson requires students to have a username and password for the schools ArcGIS Online subscription.For assistance with adding your students into the schools ArcGIS Online subscription or to order a schools ArcGIS Online subscription free of charge contact gisinschools@eagle.co.nz
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How do you ensure your data is free of errors? While you may already leverage ArcGIS Data Reviewer for its automated validation capabilities, you might ocassionally encounter problems with certain challenging subsets of features. For example, think about a situation in which you expected an automated data check to return a certain error but it did not. You tried configuring the check over and over again, but did not figure out a method of automatically detecting the error.Visual review can help. Manually reviewing your data provides a way to find errors that are difficult to detect using automated methods, such as features that are missing, misplaced, miscoded, or redundant.The following graphic shows the topics that will be covered throughout the course. You will learn the associated workflows that take advantage of ArcGIS Data Reviewer functionality.After completing this course, you will be able to:Determine situations in which visual review is appropriate.Analyze a statistically significant sample.Create a QC grid and perform a systematic visual review.Indicate missing, misplaced, miscoded, or redundant features.Recognize how to find changes between versions.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Created in the method described here: https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/vintage-shaded-relief-basemap/. Scintillating backstory here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/how-to-smash-vintage-hillshade-into-modern-imagery/This basemap extends from zoom levels 0 - 9, though levels 8 and 9 are pixelated and primarily intended to be a transitional hand-off to a small scale tile set, like World Imagery. See this transition in the example web map here: https://nation.maps.arcgis.com/home/webmap/viewer.html?webmap=ccbfec91e19d4f9fb0769af361c31516The hillshade is an extract of the darkest and lightest tones in this vintage mid-century shaded relief plate hand painted by Kenneth Townsend. Mid-tones are transparent to permit a visual pass-through of an underlying satellite imagery layer. Another, unaltered, instance of this shaded relief plate is shown at 80% transparency to provide painterly hues and texture. Mr. Townsend's source plate is available as a georeferenced TIFF file at https://www.shadedreliefarchive.com/world_townsend1.htmlLearn more about this, and other, shaded relief via the archive, maintained by Tom Patterson and Bernhard Jenny, here: https://www.shadedreliefarchive.com/about.htmlThe underlying satellite imagery is derived from the NASA blue marble project's Visible Earth mosaics of cloud-free imagery, available here: https://visibleearth.nasa.gov/view.php?id=73826Cartographic layers, such as the oceans overlay, graticule, and lakes and rivers, are a combination of custom layers and content sourced from Natural Earth. Their pencil strokes and paper texture backgrounds can be found in the ArcGIS Pro Watercolor style, available here: https://esri-styles.maps.arcgis.com/home/item.html?id=936edb7f57334763a8247d1019a9de51Happy Vintage Basemapping! John Nelson
THE GEOINQUIRIES™ COLLECTION FOR U.S. History
http://www.esri.com/geoinquiries
The GeoInquiry™ collection for World History contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory world history classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the C3 Framework for social studies curriculum standards.
All World History GeoInquiries™ can be found at: http://esriurl.com/worldHistoryGeoInquiries
All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries
Lesson in ArcGIS Online to help students to develop an understanding of spatial distribution of the Canterbury Earthquake Sequence 2010-2012. This lesson can be used to supplement existing materials you may already be teaching in the classroom, especially with the new NCEA Geography 1.1 standard.It is not designed for assessment.This lesson requires students to have a username and password for the schools ArcGIS Online subscription.For assistance with adding your students into the schools ArcGIS Online subscription or to order a schools ArcGIS Online subscription free of charge contact gisinschools@eagle.co.nz
Lesson in ArcGIS Online to explore patterns of poverty and how they relate to children in New Zealand. This lesson can be used to supplement existing materials you may already be teaching in the classroom.It is not designed for assessment.This lesson requires students to have a username and password for the schools ArcGIS Online subscription.For assistance with adding your students into the schools ArcGIS Online subscription or to order a schools ArcGIS Online subscription free of charge contact gisinschools@eagle.co.nz
To do more than the very basics of GIS you will need to sign up for a FREE Schools ArcGIS Online subscription. To sign up for a subscription contact gisinschools@eagle.co.nz
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
THE GEOINQUIRIES™ COLLECTION FOR MATHEMATICS
http://www.esri.com/geoinquiries
The GeoInquiry™ collection for Mathematics contains 15 free, standards-based activities that correspond and extend spatial concepts found in course textbooks frequently used in introductory algebra or geometry classes. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core mathematics national curriculum standards.
All Mathematics GeoInquiries™ can be found at: http://eseriurl.com/mathGeoInquiries
All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries
To do more than the very basics of GIS you will need to sign up for a FREE Schools ArcGIS Online subscription. To sign up for a subscription contact gisinschools@eagle.co.nz
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.