68 datasets found
  1. ArcGIS World Geocoding

    • hub.arcgis.com
    • cityworks-alcogis.opendata.arcgis.com
    Updated Dec 20, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2012). ArcGIS World Geocoding [Dataset]. https://hub.arcgis.com/content/305f2e55e67f4389bef269669fc2e284
    Explore at:
    Dataset updated
    Dec 20, 2012
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World
    Description

    The ArcGIS World Geocoding Service finds addresses and places in all supported countries around the world in a single geocoding service. The service can find point locations of addresses, cities, landmarks, business names, and other places. The output points can be visualized on a map, inserted as stops for a route, or loaded as input for a spatial analysis.The service is available as both a geosearch and geocoding service:Geosearch Services – The primary purpose of geosearch services is to locate a feature or point of interest and then have the map zoom to that location. The result might be displayed on the map, but the result is not stored in any way for later use. Requests of this type do not require a subscription or a credit fee. Geocoding Services – The primary purpose of geocoding services is to convert an address to an x,y coordinate and append the result to an existing record in a database. Mapping is not always involved, but placing the results on a map may be part of a workflow. Batch geocoding falls into this category. Geocoding requires a subscription. An ArcGIS Online Subscription, or ArcGIS Location Platform Subscription, will provide you access to the ArcGIS World Geocoding service for batch geocoding.The service can be used to find address and places for many countries around the world. For detailed information on this service, including a data coverage map, visit the ArcGIS World Geocoding service documentation.

  2. Waar kan ik credits bijbestellen voor ArcGIS Online

    • support-esrinl-support.hub.arcgis.com
    Updated Dec 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri_NL_Support (2023). Waar kan ik credits bijbestellen voor ArcGIS Online [Dataset]. https://support-esrinl-support.hub.arcgis.com/datasets/waar-kan-ik-credits-bijbestellen-voor-arcgis-online
    Explore at:
    Dataset updated
    Dec 5, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri_NL_Support
    Description

    Laatste update: 13 januari 2025Het kan voorkomen dat een organisatie niet voldoende credits beschikbaar heeft om alle werkzaamheden uit te voeren. Het is dan mogelijk credits los bij te bestellen. Dat kan via deze link: Additionele credits ArcGIS Online bestellen - Esri NederlandNadat er ingelogd is met het mijn.esri.nl account (gebruikersnaam is e-mailadres) worden een aantal gegevens automatisch ingevuld. Controleer deze goed. Vul vervolgens de overige gegevens in en klik op Bestellen om de bestelling definitief te maken.

  3. a

    Tax Credit Seismic 3D

    • gis.data.alaska.gov
    • hub.arcgis.com
    • +1more
    Updated Apr 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2024). Tax Credit Seismic 3D [Dataset]. https://gis.data.alaska.gov/datasets/tax-credit-seismic-3d
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description
    1. This map is intended as a current snapshot of information that can be disclosed publicly regarding tax credit seismic surveys.2. Representation on this map does not guarantee public release and is subject to statutory requirements in effect at the time of acquisition and application for tax credit.3. Release is subject to public notice and permission of private oil and gas mineral estate owner where applicable. Some surveys require clipping to mineral ownership boundaries; actual map extents of released datasets may differ from those shown here. 4. Year label "Released" surveys denote actual release year. Year label "Eligible" and "Issued" denote the year in which the data is eligible for release and distribution under AS 43.55.025(f)(2)(c), most tax credit seismic projects are held confidential for 10 years from completion of initial seismic processing. 5. Map does not include surveys whose initial seismic processing was completed less than 10 years ago but prior to legislative adoption of the disclosure clause of AS 43.55.025(f)(5). Seismic surveys acquired with credits under AS 43.55.023 are not subject to disclosure under AS 43.55.025(f)(5), and cannot be represented here until their confidentiality period has expired.6. Additional qualifying surveys will be added to this map as new tax credit certificates are issued or as changes in confidentiality status allows.
  4. World Ecological Facets Landform Classes

    • geoportal-pacificcore.hub.arcgis.com
    • cacgeoportal.com
    • +2more
    Updated Jul 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). World Ecological Facets Landform Classes [Dataset]. https://geoportal-pacificcore.hub.arcgis.com/datasets/cd817a746aa7437cbd72a6d39cdb4559
    Explore at:
    Dataset updated
    Jul 15, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes:

    Percent of neighborhood over 8% of slope

    Slope Classes

    0 - 20%

    400

    21% -50%

    300

    51% - 80%

    200

    81%

    100

    Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:

    Change in elevation

    Relief Class ID

    0 – 30 meters

    10

    31 meter – 90 meters

    20

    91 meter – 150 meters

    30

    151 meter – 300 meters

    40

    301 meter – 900 meters

    50

    900 meters

    60

    The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:

    Percent of neighborhood over 8% slope in upland or lowland areas

    Profile Class

    Less than 50% gentle slope is in upland or lowland

    0

    More than 75% of gentle slope is in lowland

    1

    50%-75% of gentle slope is in lowland

    2

    50-75% of gentle slope is in upland

    3

    More than 75% of gentle slope is in upland

    4

    Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  5. c

    Landforms

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Landforms [Dataset]. https://www.cacgeoportal.com/maps/6a37e5e185d04f5184140cc53d86602a
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This layer is subset of World Ecological Facets Landform Classes Image Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  6. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  7. a

    OpenStreetMap Highways for Africa

    • wb-sdgs.hub.arcgis.com
    • uneca.africageoportal.com
    • +8more
    Updated May 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smoore2_osm (2021). OpenStreetMap Highways for Africa [Dataset]. https://wb-sdgs.hub.arcgis.com/items/6d78851a40f54041a775d7c6f4b2633e
    Explore at:
    Dataset updated
    May 17, 2021
    Dataset authored and provided by
    smoore2_osm
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer provides access to OpenStreetMap (OSM) highways data for Africa, which is updated every 5 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM line (way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes highway features defined as a query against the hosted feature layer (i.e. highway is not blank).In OSM, a highway describes any kind of motorway, road, street or path. These features are identified with a highway tag. There are hundreds of different tag values for highway used in the OSM database. In this feature layer, unique symbols are used for several of the most popular highway types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. Streets level or 1:20k scale) to see the highway features display. You can click on a feature to get the name of the highway (if available). The name of the highway will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this highway layer displaying just one or two highway types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. highway is path), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. cycleway and pedestrian) that are ready to use, but not for every type of highway.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.

  8. p

    Pacific Region Landform Classes

    • pacificgeoportal.com
    • hub.arcgis.com
    • +1more
    Updated Sep 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Pacific Region Landform Classes [Dataset]. https://www.pacificgeoportal.com/maps/1389b8aabc4347acb22dfb57116005aa
    Explore at:
    Dataset updated
    Sep 21, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    Area covered
    Description

    This layer is a subset of World Ecological Facets Landforms Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  9. a

    OpenStreetMap Medical Facilities for Africa

    • rwanda.africageoportal.com
    • uneca.africageoportal.com
    • +13more
    Updated May 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smoore2_osm (2021). OpenStreetMap Medical Facilities for Africa [Dataset]. https://rwanda.africageoportal.com/items/5f23ebcc16ab4ee79534f2d1cc686a6c
    Explore at:
    Dataset updated
    May 17, 2021
    Dataset authored and provided by
    smoore2_osm
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer provides access to OpenStreetMap (OSM) point data of medical facilities for Africa, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM point (node) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes amenity features defined as a query against the hosted feature layer where the amenity value is any of 'hospital', 'clinic', 'doctors', or 'pharmacy'.In OSM, amenities are useful and important facilities for visitors and residents, such as hospitals and clinics. These features are identified with an amenity tag. There are thousands of different tag values used in the OSM database. In this feature layer, unique symbols are used for the most common amenity tags used for medical facilities.Zoom in to large scales (e.g. Neighborhood level or 1:20k scale) to see the amenity features display. You can click on a feature to get the name of the amenity. The name of the amenity will display by default at very large scales (e.g. Building level of 1:2k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this medical facilities layer displaying just one or two amenity types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. amenity is hospital), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri will publish a few such layers (e.g. Places of Worship, Schools, and Parking) that are ready to use, but not for every type of amenity.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.

  10. O

    MD iMAP: Maryland Soils - Coastal Zone Bottom Classes

    • opendata.maryland.gov
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Jul 28, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2016). MD iMAP: Maryland Soils - Coastal Zone Bottom Classes [Dataset]. https://opendata.maryland.gov/Geoscientific/MD-iMAP-Maryland-Soils-Coastal-Zone-Bottom-Classes/mcxa-cx99
    Explore at:
    csv, json, tsv, application/rdfxml, application/rssxml, xmlAvailable download formats
    Dataset updated
    Jul 28, 2016
    Dataset authored and provided by
    ArcGIS Online for Maryland
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Maryland
    Description

    This is a MD iMAP hosted service layer. Find more information at http://imap.maryland.gov. Bottom classification polygons represent the general type of sediment on the seafloor. Determined from acoustic data analysis and grab sampling. Last Updated: Feature Service Layer Link: https://mdgeodata.md.gov/imap/rest/services/Geoscientific/MD_Soils/MapServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  11. e

    Eugene Future Street Classes - HUB

    • mapping.eugene-or.gov
    • hub.arcgis.com
    Updated Jan 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online Content (2020). Eugene Future Street Classes - HUB [Dataset]. https://mapping.eugene-or.gov/datasets/Eugene-PWE::eugene-future-street-classes-hub/about
    Explore at:
    Dataset updated
    Jan 3, 2020
    Dataset authored and provided by
    ArcGIS Online Content
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Future Streets identified in the 2017 Transportation Strategic Plan (TSP)

  12. a

    OpenStreetMap Leisure Areas for Africa

    • morocco.africageoportal.com
    • namibia.africageoportal.com
    • +11more
    Updated May 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smoore2_osm (2021). OpenStreetMap Leisure Areas for Africa [Dataset]. https://morocco.africageoportal.com/items/d1598feb7ec64101b53b96d1879f8b22
    Explore at:
    Dataset updated
    May 17, 2021
    Dataset authored and provided by
    smoore2_osm
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer provides access to OpenStreetMap (OSM) leisure areas data for Africa, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM polygon (closed way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes leisure features defined as a query against the hosted feature layer (i.e. leisure is not blank).In OSM, a leisure area is a place where people go in their spare time. These features are identified with a leisure tag. There are thousands of different tag values for leisure used in the OSM database. In this feature layer, unique symbols are used for several of the most popular leisure types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. City level or 1:80k scale) to see the leisure area features display. You can click on a feature to get the name of the leisure area (if available). The name of the leisure area will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this leisure areas layer displaying just one or two leisure types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. leisure is stadium), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. parks) that are ready to use, but not for every type of leisure area.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.

  13. Directions (Mature)

    • cityofdentongishub-dentontxgis.hub.arcgis.com
    Updated Dec 10, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2014). Directions (Mature) [Dataset]. https://cityofdentongishub-dentontxgis.hub.arcgis.com/items/556db83093934365a8d7e2f294aa785b
    Explore at:
    Dataset updated
    Dec 10, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Directions is a configurable app template that provides turn by turn directions to features within a destination layer or a specific destination. Travel modes include driving and walking. Use CasesDirections identifies the nearest destination feature to a user-selected address or location and provides turn-by-turn directions between the two points.Directions is a good choice when you want to route to the nearest destination, make a store locator when many options are available, or for providing directions to a single office or location.Configurable OptionsDirections can be used to provide routing from a user defined location to features within the map and can be configured using the following options:Choose a title and color scheme.Provide hint text for the address search box. The web map's default extent is used as the search extent for addresses.Define a destination layer from the web map that will be used for routing.Provide alternate destination location information if no destination layer is declared. Options are latitude/longitude or single line address.Specify a closest facility task URL or other custom routing service. If left blank, the default is the ArcGIS routing service.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsRouting requires an ArcGIS Online organizational subscription or an ArcGIS Developer account and does consume credits.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  14. a

    NCUA Insured Credit Unions

    • disasters-geoplatform.hub.arcgis.com
    • azgeo-open-data-agic.hub.arcgis.com
    • +3more
    Updated Nov 19, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2014). NCUA Insured Credit Unions [Dataset]. https://disasters-geoplatform.hub.arcgis.com/datasets/ncua-insured-credit-unions
    Explore at:
    Dataset updated
    Nov 19, 2014
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    Area covered
    Description

    The National Credit Union Administration (NCUA) is the independent federal agency that charters and supervises federal credit unions. NCUA, backed by the full faith and credit of the U.S. government, operates the National Credit Union Share Insurance Fund (NCUSIF) that insures the savings of 80 million account holders in all federal credit unions and many state-chartered credit unions.

  15. a

    Deposit and Bank Credit of SCBs

    • hub.arcgis.com
    • up-state-observatory-esriindia1.hub.arcgis.com
    Updated Mar 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). Deposit and Bank Credit of SCBs [Dataset]. https://hub.arcgis.com/maps/esriindia1::deposit-and-bank-credit-of-scbs-
    Explore at:
    Dataset updated
    Mar 3, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer shows State-wise Deposit and Bank Credit of SCBs (2019-24) as per the Economic Survey Report 2024-2025.Data Source: https://www.indiabudget.gov.in/economicsurvey/doc/stat/tab3.3.pdfNote:States as per place of sanction. Deposits exclude inter-bank deposits.Figures for Dadra & Nagar Haveli include Daman & Diu as well only for the years 2020 and 2021.This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know via content@esri.in.

  16. a

    Tax Credit Seismic 2D

    • hub.arcgis.com
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2024). Tax Credit Seismic 2D [Dataset]. https://hub.arcgis.com/datasets/85493c8688a54792a19d73bca57487dd
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description
    1. This map is intended as a current snapshot of information that can be disclosed publicly regarding tax credit seismic surveys.2. Representation on this map does not guarantee public release and is subject to statutory requirements in effect at the time of acquisition and application for tax credit.3. Release is subject to public notice and permission of private oil and gas mineral estate owner where applicable. Some surveys require clipping to mineral ownership boundaries; actual map extents of released datasets may differ from those shown here. 4. Year label "Released" surveys denote actual release year. Year label "Eligible" and "Issued" denote the year in which the data is eligible for release and distribution under AS 43.55.025(f)(2)(c), most tax credit seismic projects are held confidential for 10 years from completion of initial seismic processing. 5. Map does not include surveys whose initial seismic processing was completed less than 10 years ago but prior to legislative adoption of the disclosure clause of AS 43.55.025(f)(5). Seismic surveys acquired with credits under AS 43.55.023 are not subject to disclosure under AS 43.55.025(f)(5), and cannot be represented here until their confidentiality period has expired.6. Additional qualifying surveys will be added to this map as new tax credit certificates are issued or as changes in confidentiality status allows.
  17. Inzicht in creditverbruik met ArcGIS Online rapporten

    • support-esrinl-support.hub.arcgis.com
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Nederland Support (2023). Inzicht in creditverbruik met ArcGIS Online rapporten [Dataset]. https://support-esrinl-support.hub.arcgis.com/datasets/inzicht-in-creditverbruik-met-arcgis-online-rapporten
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Nederland Support
    Description

    Laatste update: 13 januari 2025Als beheerder van een organisatie is het goed om te weten welke items in je ArcGIS Online omgeving een groot formaat hebben en veel credits verbruiken voor opslag.In ArcGIS Online is al veel informatie te vergaren door via het Dashboard in ArcGIS Online naar credit verbruik te kijken. Toelichting over gebruiken van het dashboard staat in dit artikel.

  18. a

    Tax Credit Seismic Survey

    • dog-soa-dnr.opendata.arcgis.com
    Updated Jun 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2020). Tax Credit Seismic Survey [Dataset]. https://dog-soa-dnr.opendata.arcgis.com/datasets/1a9902e16a474eaf966650ac4240235c
    Explore at:
    Dataset updated
    Jun 11, 2020
    Dataset authored and provided by
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    A map service of tax credit data

  19. ArcGIS Online-abonnement activeren

    • support-esrinl-support.hub.arcgis.com
    Updated Nov 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Nederland Support (2023). ArcGIS Online-abonnement activeren [Dataset]. https://support-esrinl-support.hub.arcgis.com/datasets/arcgis-online-abonnement-activeren
    Explore at:
    Dataset updated
    Nov 27, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Nederland Support
    Description

    Laatste update: 10 februari 2025Terug naar Esri Nederland Support HubNa het aanvragen van een ArcGIS Online-abonnement ontvangt de bij Esri Nederland geregistreerde contactpersoon van jullie organisatie een e-mail met een activeringslink. Mocht bij jullie niet bekend zijn wie deze persoon is, dan kan contact opgenomen worden met Esri Nederland (+31 10 217 0700 of administratie@esri.nl). Klanten met een ArcGIS Pro-licentie in onderhoud krijgen hier standaard een ArcGIS Online-abonnement bij. Het is mogelijk extra ArcGIS Online-gebruikers (User Types) of credits aan te schaffen. Deze worden dan toegevoegd aan het bestaande ArcGIS Online-abonnement, tenzij er andere afspraken zijn gemaakt.

  20. a

    Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • hub.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • +1more
    Updated May 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://hub.arcgis.com/maps/c6d64a3ac69e4c0c80fdfa011f08d0e2
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2012). ArcGIS World Geocoding [Dataset]. https://hub.arcgis.com/content/305f2e55e67f4389bef269669fc2e284
Organization logo

ArcGIS World Geocoding

Explore at:
134 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 20, 2012
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
World
Description

The ArcGIS World Geocoding Service finds addresses and places in all supported countries around the world in a single geocoding service. The service can find point locations of addresses, cities, landmarks, business names, and other places. The output points can be visualized on a map, inserted as stops for a route, or loaded as input for a spatial analysis.The service is available as both a geosearch and geocoding service:Geosearch Services – The primary purpose of geosearch services is to locate a feature or point of interest and then have the map zoom to that location. The result might be displayed on the map, but the result is not stored in any way for later use. Requests of this type do not require a subscription or a credit fee. Geocoding Services – The primary purpose of geocoding services is to convert an address to an x,y coordinate and append the result to an existing record in a database. Mapping is not always involved, but placing the results on a map may be part of a workflow. Batch geocoding falls into this category. Geocoding requires a subscription. An ArcGIS Online Subscription, or ArcGIS Location Platform Subscription, will provide you access to the ArcGIS World Geocoding service for batch geocoding.The service can be used to find address and places for many countries around the world. For detailed information on this service, including a data coverage map, visit the ArcGIS World Geocoding service documentation.

Search
Clear search
Close search
Google apps
Main menu