Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly extracts of historic Traffic Data at Signalised derived by SCATS.
SCATS (Sydney Coordinated Adaptive Traffic System) is an intelligent transportation system that manages the dynamic timing of signal phases at traffic signals in real time. The system estimates the number of vehicles passing through the intersection and other information related to traffic signal timing. There is no guarantee this data is accurate or was used to make internal decisions in SCATS.
The data is provided by controller site. Each site has its own parquet file for the month, which contains SCATS data produced by that site. The files use the LM site number format (e.g. – Site 1 is LM00001).
Note that you are accessing the data provided by the links below pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes and may have errors.
Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material:- “The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability.”
A data dictionary is provided at the document link.
Monthly data extracts are in parquet format.
The locations of the traffic signals are found at the link below.
https://portal-mainroads.opendata.arcgis.com/datasets/traffic-signal-sitesAvailable in JSON format below.gisservices.mainroads.wa.gov.au/arcgis/rest/services/Connect/MapServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pjson
The mapping of the detectors to the strategic approaches at an intersection is given at the link below.
https://mainroadsopendata.mainroads.wa.gov.au/swagger/ui/index#/LmSaDetector
Further information, including SCATS graphics, is available via the Traffic Signal information on Main Roads TrafficMap
trafficmap - Main Roads WA
Using the coronavirus infographic template in Business/Community Analyst Web (ArcGIS Blog).Business Analyst (BA) Web infographics are a powerful way to understand demographics and other information in context. This blog article explains how your organization can use the Coronavirus infographic template that was added to the infographics gallery on March 1, 2020._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The National Transit Map - Stops dataset was compiled on June 02, 2025 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The National Transit Map (NTM) is a nationwide catalog of fixed-guideway and fixed-route transit service in America. It is compiled using General Transit Feed Specification (GTFS) Schedule data. The NTM Stops dataset shows stops where vehicles pick up or drop off riders. This dataset uses the GTFS stops.txt file. The GTFS schedule format and structure documentation is available at, https://gtfs.org/schedule/. To improve the spatial accuracy of the NTM Stops, the Bureau of Transportation Statistics (BTS) adjusts transit stops using context from the submitted GTFS source data and/or from other publicly available information about the transit service. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529049
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.In the soil, clay and humus have static electrical charges that attract and hold positively charged particles known as cations. These positively charged particles are often plant nutrients and their abundance can be used as a measure of soil fertility.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to the exchange capacity of the soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these attributes related to exchange capacity:Cation Exchange Capacity – Clay - cmol/kgCation Exchange Capacity – Soil - cmol/kgBase Saturation - %Total Exchangeable Bases - cmol/kg Total Sodicity (ESP) - % Additionally, class description fields based on the document Harmonized World Soil Database Version 1.2 were added by Esri for the Base Saturation and Total Sodicity fields for the topsoil and subsoil layers of each map unit. These fields are designed for use in web map pop-ups.The layer is symbolized with the Topsoil Base Saturation field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil exchange capacity attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Time enabled Ridge 2 radar base reflectivity REST image service with WMS capabilities. Four hour moving window updating every 10 minutes with data for Conus, Alaska, The Caribbean, Guam, and Hawaii. Link to graphical web page: https://radar.weather.gov/Link to data download (tif): https://mrms.ncep.noaa.gov/data/Link to metadata: https://www.weather.gov/gis/IDP-GISRestMetadataQuestions/Concerns about the service, please contact the DISS GIS team.Time Information:This service is time-enabled, meaning clients can submit image requests including a time parameter specified in epoch time format (milliseconds since 00:00 January 1, 1970).The time extent of this service includes the past four hours up to the current time updated approximately every ten minutes. All times are specifed in UTC. If time parameters are omitted, the most recent image will be returned. Refer to the ArcGIS REST API Image Service Documentation for more information. In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.In ArcGIS.com a time slider can be turned on by clicking the three dots under "radar_base_reflectivity_time" heading and choosing "Enable Time Animation". Note that the ArcGIS.com default client may initialize with an incorrect time extent in which case the user will need to specify the desired extent interactively. Refer to the ArcGIS Online Help Documentation for more information.
Table from the American Community Survey (ACS) 5-year series on languages spoken and English ability related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B16004 Age by Language Spoken at Home by Ability to Speak English, C16002 Household Language by Household Limited English-Speaking Status. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
This layer shows Population. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains
estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields"
at the top right. Current Vintage: 2015-2019ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey
Date of API call: February 10, 2021National Figures: data.census.gov
The United States Census Bureau's American Community Survey (ACS):
About the SurveyGeography & ACSTechnical Documentation
News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online,
its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when
using this data.Data Note from the
Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate
arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can
be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error
(the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a
discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Data Processing Notes:
Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates
(annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or
coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For
state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes
within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no
population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated
margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications
defined by the American Community Survey.Field alias names were created
based on the Table Shells file available from the
American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API
(or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent
counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API,
such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.
An ArcGIS Blog tutorial that guides you through creating your first dashboard using ArcGIS Dashboards.ArcGIS Dashboards is a configurable web app available in ArcGIS Online that enables users to convey information by presenting interactive charts, gauges, maps, and other visual elements that work together on a single screen.In this tutorial you will create a simple dashboard using ArcGIS Dashboards. The dashboard uses a map of medical facilities in Los Angeles County (sample data only) and includes interactive chart and list elements._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.The mineral composition of underlying rock, the amount and type of organic material from plants and climatic and other environmental factors affect the chemistry of the soil. Chemical composition and processes determine how and what type of soil forms at a given location and what type of agriculture the areas wil support.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to the chemistry of soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these soil chemistry attributes:Organic Carbon - % weightCalcium Carbonate - % weightGypsum - % weightSalinity - Electrical Conductivity - dS/mpHAdditionally, 4 class description fields were added by Esri based on the document Harmonized World Soil Database Version 1.2 for use in web map pop-ups:pH Class DescriptionCalcium Carbonate Class DescriptionGypsum Class DescriptionSalinity - Electrical Conductivity - Class DescriptionThe layer is symbolized with the Topsoil pH field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil chemistry attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes describing the basic properties of soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Attributes in this layer include:Soil Phase 1 and Soil Phase 2 - Phases identify characteristics of soils important for land use or management. Soils may have up to 2 phases with phase 1 being more important than phase 2.Other Properties - provides additional information important for agriculture.Additionally, 3 class description fields were added by Esri based on the document Harmonized World Soil Database Version 1.2 for use in web map pop-ups:Soil Phase 1 DescriptionSoil Phase 2 DescriptionOther Properties DescriptionThe layer is symbolized with the Soil Unit Name field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil properties attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. Please use the following layers as replacements: World Soils 250m pH, World Soils 250m Cation Exchange Capacity, World Soils 250m Nitrogen, World Soils 250m Organic Carbon Density, World Soils 250m Organic Carbon Stocks, World Soils 250m Soil Organic Carbon. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.The mineral composition of underlying rock, the amount and type of organic material from plants and climatic and other environmental factors affect the chemistry of the soil. Chemical composition and processes determine how and what type of soil forms at a given location and what type of agriculture the areas wil support.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to the chemistry of soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these soil chemistry attributes:Organic Carbon - % weightCalcium Carbonate - % weightGypsum - % weightSalinity - Electrical Conductivity - dS/mpHAdditionally, 4 class description fields were added by Esri based on the document Harmonized World Soil Database Version 1.2 for use in web map pop-ups:pH Class DescriptionCalcium Carbonate Class DescriptionGypsum Class DescriptionSalinity - Electrical Conductivity - Class DescriptionThe layer is symbolized with the Topsoil pH field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil chemistry attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data include 2015 - 2018 eDNA field sample points indicating lab results for presence or absence of bull trout. Sample sites are spaced at a 1 kilometer interval throughout the historical range of bull trout. eDNA stream samples are collected and species presence/absence is determined by analyses at the National Genomics Center. Results are recorded in the feature attribute table of the eDNA sample site shapefile. One point feature in the shapefile was generated for each 1 kilometer sample point in the bull trout eDNA feature class. Where multiple samples were collected at a single eDNA sample site, replicate point features will occur at a single location in the shapefile. The bull trout is an ESA-listed species with a historical range that encompasses many waters across the Northwest. Though once abundant, bull trout have declined in many locations and are at risk from a changing climate, nonnative species, and habitat degradation. Informed conservation planning relies on sound and precise information about the distribution of bull trout in thousands of streams, but gathering this information is a daunting and expensive task. To overcome this problem, we coupled 1) predictions from the range-wide, spatially precise Climate Shield model on the location of natal habitats of bull trout with 2) a sampling template for every 8-digit hydrologic unit in the historical range of bull trout, based on the probability of detecting bull trout presence using environmental DNA (eDNA) sampling (McKelvey et al. 2016). The template consists of a master set of geospatially referenced sampling locations at 1-kilometer intervals within each cold-water habitat. We also identified sampling locations at this same interval based on the U.S. Fish and Wildlife Service's (USFWS) designation of critical spawning and rearing habitat. Based on field tests of eDNA detection probabilities conducted by the National Genomics Center for Wildlife and Fish Conservation, this sampling approach will reliably determine the presence of populations of bull trout, as well as provide insights on non-spawning habitats used by adult and subadult fish. The completed bull trout eDNA survey results are available through an interactive ArcGIS Online Map. The map provides the ability to zoom in and look at an area of interest, as well as to create queries or select an area to download points as a shapefile.
Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.In the soil, clay and humus have static electrical charges that attract and hold positively charged particles known as cations. These positively charged particles are often plant nutrients and their abundance can be used as a measure of soil fertility.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to the exchange capacity of the soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these attributes related to exchange capacity:Cation Exchange Capacity – Clay - cmol/kgCation Exchange Capacity – Soil - cmol/kgBase Saturation - %Total Exchangeable Bases - cmol/kg Total Sodicity (ESP) - % Additionally, class description fields based on the document Harmonized World Soil Database Version 1.2 were added by Esri for the Base Saturation and Total Sodicity fields for the topsoil and subsoil layers of each map unit. These fields are designed for use in web map pop-ups.The layer is symbolized with the Topsoil Base Saturation field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil exchange capacity attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
This data represents five-digit ZIP Code areas used by the U.S. Postal Service. This is an ArcGIS Online item directly from Esri. For more information see https://www.arcgis.com/home/item.html?id=8d2012a2016e484dafaac0451f9aea24.
This layer shows Housing Tenure. This is shown by state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains
estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show the predominant housing type: owner-occupied, renter-occupied, or other. The size of the symbol represents the total count of housing units.. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields"
at the top right. Current Vintage: 2015-2019ACS Table(s): B25010, DP04Data downloaded from: Census Bureau's API for American Community Survey
Date of API call: February 10, 2021National Figures: data.census.gov
The United States Census Bureau's American Community Survey (ACS):
About the SurveyGeography & ACSTechnical Documentation
News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online,
its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when
using this data.Data Note from the
Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate
arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can
be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error
(the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a
discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Data Processing Notes:
Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates
(annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or
coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For
state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes
within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no
population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated
margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications
defined by the American Community Survey.Field alias names were created
based on the Table Shells file available from the
American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API
(or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent
counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API,
such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.
Soil Surveys by StatePrinted soil survey reports were the main source of soils information from 1899 to 2005. Most of these reports are county-based and have been converted to PDFs. USDA phased out the printing of reports after making Web Soil Survey the official source for soils information in 2005. Historical soil surveys have been scanned, converted to portable document format (pdf), and archived on a public download site. The text and maps are saved as separate files. You can download an individual file or select a folder to download an entire survey. The bookmarks in the pdf files only function when the files are downloaded. They do not function in the previews provided by the site. Historical soil surveys are being moved into https://archive.org/details/usda-soil-surveys. See "Access Historical Soil Surveys from Internet Archive" instructions in the Additional Documents section. Additional Documents:Access Historical Soil Surveys from Internet ArchiveInstructions on how to access historical soil surveysHow to download scanned soil survey manuscriptsLinks to Scanned Manuscripts In Box
This layer shows Housing Tenure. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains
estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show the predominant housing type: owner-occupied, renter-occupied, or other. The size of the symbol represents the total count of housing units.. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields"
at the top right. Current Vintage: 2015-2019ACS Table(s): B25010, DP04Data downloaded from: Census Bureau's API for American Community Survey
Date of API call: February 10, 2021National Figures: data.census.gov
The United States Census Bureau's American Community Survey (ACS):
About the SurveyGeography & ACSTechnical Documentation
News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online,
its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when
using this data.Data Note from the
Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate
arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can
be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error
(the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a
discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Data Processing Notes:
Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates
(annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or
coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For
state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes
within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no
population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated
margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications
defined by the American Community Survey.Field alias names were created
based on the Table Shells file available from the
American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API
(or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent
counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API,
such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.
This layer shows Race and Ethnicity. This is shown by state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains
estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show the percentage of households with no internet connection. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields"
at the top right. Current Vintage: 2015-2019ACS Table(s): B02001, B03001, DP05Data downloaded from: Census Bureau's API for American Community Survey
Date of API call: February 10, 2021National Figures: data.census.gov
The United States Census Bureau's American Community Survey (ACS):
About the SurveyGeography & ACSTechnical Documentation
News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online,
its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when
using this data.Data Note from the
Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate
arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can
be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error
(the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a
discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Data Processing Notes:
Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates
(annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or
coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For
state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes
within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no
population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated
margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications
defined by the American Community Survey.Field alias names were created
based on the Table Shells file available from the
American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API
(or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent
counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API,
such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8