Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. The Canadian Environmental Sustainability Indicators (CESI) program provides data and information to track Canada's performance on key environmental sustainability issues. The Greenhouse Gas Reporting Program ensures that greenhouse gas emissions from Canada's largest emitters are measured and reported. This mandatory reporting contributes to the development, implementation and evaluation of climate change and energy policies and strategies in Canada. Greenhouse gas emissions data reported through the Greenhouse Gas Reporting Program are used, where appropriate, to confirm the reasonableness of estimates of greenhouse gas emissions in Canada in the National Inventory Report. Information is provided to Canadians in a number of formats including: static and interactive maps, charts and graphs, HTML and CSV data tables and downloadable reports. See the supplementary documentation for the data sources and details on how the data were collected and how the indicator was calculated.The latest reporting year (2021) coincides with the second year of the COVID-19 pandemic, which affected a wide range of industrial sectors. The results must be interpreted in the context of the pandemic impacting facility operations in 2020 and 2021 to some extent (for example, production slow-downs and reduced demand) but other non-pandemic related factors also contributed to observed emission changes (such as, lower coal consumption and fuel switching).For more information: Greenhouse gas reporting: facilitiesGreenhouse gas emissions from large facilities
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The National Transit Map - Stops dataset was compiled on June 02, 2025 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The National Transit Map (NTM) is a nationwide catalog of fixed-guideway and fixed-route transit service in America. It is compiled using General Transit Feed Specification (GTFS) Schedule data. The NTM Stops dataset shows stops where vehicles pick up or drop off riders. This dataset uses the GTFS stops.txt file. The GTFS schedule format and structure documentation is available at, https://gtfs.org/schedule/. To improve the spatial accuracy of the NTM Stops, the Bureau of Transportation Statistics (BTS) adjusts transit stops using context from the submitted GTFS source data and/or from other publicly available information about the transit service. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529049
Important Note: This item is in mature support as of June 2025 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
This layer represents CMIP6 future projections of minimum temperature during the coldest month of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. Data describing clean growth and climate change projects that have received federal funding since 2015 that feeds into the Climate Action Map. The data include projects that meet Mitigation, Adaptation and Clean Technology objectives. The data include project names and descriptions, funding information, locations, and recipients.Additional Resources:Climate action webmapResource page Update Frequency: As Needed
Important Note: This item is in mature support as of June 2025 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
This layer represents CMIP6 future projections of mean temperature during the three wettest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Important Note: This item is in mature support as of June 2025 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
This layer represents CMIP6 future projections of total precipitation during the three wettest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. Mapping Resources on energy infrastructure and potential implemented as part of the North American Cooperation on Energy Information (NACEI) between the Department of Energy of the United States of America, the Department of Natural Resources of Canada, and the Ministry of Energy of the United Mexican States.Power Plants, 100 MW or more: Stations containing prime movers, electric generators, and auxiliary equipment for converting mechanical, chemical, and/or fission energy into electric energy with an installed capacity of 100 megawatts or more. Renewable Power Plants, 1 MW or more: Stations containing prime movers, electric generators, and auxiliary equipment for converting mechanical, chemical into electric energy with an installed capacity of 1 Megawatt or more generated from renewable energy, including biomass, hydroelectric, pumped-storage hydroelectric, geothermal, solar, and wind.For more information visit North American Cooperation on Energy Information, Mapping Data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Important Note: This item is in mature support as of June 2025 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
This layer represents CMIP6 future projections of total precipitation during the driest month of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
IMPORTANT NOTICE This item has moved to a new organization and entered Mature Support on February 3rd, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 27th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here Flood maps are created by combining hydraulic model results with high-accuracy ground information. Field surveys and LiDAR remote sensing are used to collect river and floodplain elevations, channel cross section data, bridge and culvert information, and flood berm details. A hydrology assessment using recorded and historic flow measurements is typically used to estimate river flows for a wide range of possible open water floods with different chances of occurring each year. When appropriate, an ice jam frequency analysis is undertaken. All this information is used to build a hydraulic model of a river system, which is calibrated using highwater marks and aerial imagery from past floods to ensure that results for the different flood flows being mapped are reasonable. Flood inundation maps show areas at risk for different sized floods, including ice jam floods in some communities. These maps also identify areas that could be flooded if berms or other flood control structures fail and are typically used for emergency response planning and to inform local infrastructure design. Flood hazards have not been identified along all rivers or through all communities, and it is important to remember that risk exists in areas without provincial flood maps. Visit www.floodhazard.alberta.ca for more information about the Flood Hazard Identification Program. The website includes different sections for final flood studies and for draft flood studies. Flood maps can be viewed directly using the Flood Awareness Map Application at floods.alberta.ca. The Alberta Flood Mapping GIS dataset is updated when new information is available or existing information changes; therefore, the Government of Alberta assumes no responsibility for discrepancies at the time of use.Posted on 2020-12-22 to GeoDiscover Alberta by Alberta Environment and Parks.
Important Note: This item is in mature support as of June 2025 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.
This layer represents CMIP6 future projections of mean annual temperature. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. Land cover information is necessary for a large range of environmental applications related to climate impacts and adaption, emergency response, wildlife habitat, etc. In Canada, a 2008 user survey indicated that the most practical land cover data is provided in a nationwide 30 m spatial resolution format, with an update frequency of five years. In response to this need, the Canada Centre for Remote Sensing (CCRS) has generated a 30 m land cover map of Canada for the base year 2010, as well as this 2015 land cover map. This land cover dataset is also the Canadian contribution to the 30 m spatial resolution 2015 Land Cover Map of North America, which is produced by Mexican, American and Canadian government institutions under a collaboration called the North American Land Change Monitoring System (NALCMS). This land cover dataset for Canada is produced using observation from Operational Land Imager (OLI) Landsat sensor. An accuracy assessment based on 806 randomly distributed samples shows that land cover data produced with this new approach has achieved 79.90% accuracy with no marked spatial disparities.For more information visit: Land Cover of Canada - Cartographic Product Collection
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. The National Hydro Network (NHN) focuses on providing a quality geometric description and a set of basic attributes describing Canada's inland surface waters. It provides geospatial digital data compliant with the NHN Standard such as lakes, reservoirs, watercourses (rivers and streams), canals, islands, drainage linear network, toponyms or geographical names, constructions and obstacles related to surface waters, etc. The best available federal and provincial data are used for its production, which is done jointly by the federal and interested provincial and territorial partners. The NHN is created from existing data at the 1:50 000 scale or better. In particular, the modeling work of the NHN was based in part on Linear Reference System (LRS) concepts. This approach allows the management of geometric representation separately from attribute information (referred to as event in LRS). Unique Identifiers are associated with each geometric and event object. These IDs (called National Identifiers - NIDs) will lead to more efficient management of updates between data producers and data users. The NHN data have a great potential for analysis, cartographic representation and display and will serve as base data in many applications. The NHN Work Unit Limits were created based on Water Survey of Canada Sub-Sub-Drainage Area. Additional information, including documentation and pre-packaged file downloads are available on Canada's Open Government website: https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. The Ministry of Health Service Provider Locations (MOHSERLO) geospatial dataset contains the locations of health service providers in Ontario.Included in the dataset are:AIDS BureausChildren’s Treatment CentresCommunity Health CentresCommunity Support ServicesFamily Health Teams (Contract Locations)HospitalsIndependent Health FacilitiesLaboratoriesLong-Term Care HomesMental Health and Addiction OrganizationsMidwifery ClinicsNurse Practitioner Led ClinicsNursing StationsPharmaciesPublic Health Unit OfficesRetirement HomesSenior Active Living CentresFor each health service provider, there is a selection of attributes provided, including:Service provider name in English and French (if available)Service provider typeDetails related to service provider (i.e., a subcategory of service provider type)Address information (e.g., Address line 1, Community, Postal Code, etc.)The locations provided in this dataset are for planning purposes and should not be used for operational or navigation purposes.Additional DocumentationOntario GeoHub - Ministry of Health Service Provider LocationsMOH Service Location - Documentation (Word)StatusOn going: data is being continually updatedMaintenance and Update FrequencyAnnually: data is updated every yearContactMinistry of Health and Long-Term Care (MOHLTC), mike.pacey@ontario.ca
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and entered Mature Support on February 3rd, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 27th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here Earthquakes between 2010 and 2020. Earthquakes recorded by Earthquakes Canada. This dataset contains the earthquakes recorded in decade 2010. However, the National Earthquake Database makes available seismic bulletin data from 1985 and onward. See Earthquakes in Canada 2010-2019 for more resources, formats, services and contact information.See General Earthquake Information for more information such as FAQs (ex. What is the "magnitude" of an earthquake?), Glossary of Seismological Terms, earthquake zones in Canada, Tsunamis and Tools for Teachers
IMPORTANT NOTICE This item has moved to a new organization and entered Mature Support on February 3rd, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 27th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here Flood maps are created by combining hydraulic model results with high-accuracy ground information. Field surveys and LiDAR remote sensing are used to collect river and floodplain elevations, channel cross section data, bridge and culvert information, and flood berm details. A hydrology assessment using recorded and historic flow measurements is typically used to estimate river flows for a wide range of possible open water floods with different chances of occurring each year. When appropriate, an ice jam frequency analysis is undertaken. All this information is used to build a hydraulic model of a river system, which is calibrated using highwater marks and aerial imagery from past floods to ensure that results for the different flood flows being mapped are reasonable. Flood inundation maps show areas at risk for different sized floods, including ice jam floods in some communities. These maps also identify areas that could be flooded if berms or other flood control structures fail and are typically used for emergency response planning and to inform local infrastructure design. Flood hazards have not been identified along all rivers or through all communities, and it is important to remember that risk exists in areas without provincial flood maps. Visit www.floodhazard.alberta.ca for more information about the Flood Hazard Identification Program. The website includes different sections for final flood studies and for draft flood studies. Flood maps can be viewed directly using the Flood Awareness Map Application at floods.alberta.ca. The Alberta Flood Mapping GIS dataset is updated when new information is available or existing information changes; therefore, the Government of Alberta assumes no responsibility for discrepancies at the time of use.Posted on 2020-12-22 to GeoDiscover Alberta by Alberta Environment and Parks.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new English version of this item can be found here. The new French version of this item can be found here. Critical habitat is defined under section 2 of SARA as: "the habitat that is necessary for the survival or recovery of a listed wildlife species and that is identified as the species' critical habitat in the recovery strategy or in an action plan for the species". Section 49(1)(a) of SARA requires that a species' Recovery Strategy/Action Plan include an identification of the species' critical habitat to the extent possible, based on the best available information, including information provided by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). SARA makes it illegal to destroy any part of the critical habitat of SAR and may impose restrictions on development and construction.Critical habitats were assembled by SARA regional biologists and recovery teams. They are designed to support the protection and recovery of species listed as Endangered or Threatened under the Species at Risk Act. They are also described and displayed in species' Recovery Documents and Action Plans.Visit 'Critical Habitat of Species at Risk' for more information.Update Frequency: Annually
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new English version of this item can be found here. The new French version of this item can be found here. Critical habitat is defined under section 2 of SARA as: "the habitat that is necessary for the survival or recovery of a listed wildlife species and that is identified as the species' critical habitat in the recovery strategy or in an action plan for the species". Section 49(1)(a) of SARA requires that a species' Recovery Strategy/Action Plan include an identification of the species' critical habitat to the extent possible, based on the best available information, including information provided by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). SARA makes it illegal to destroy any part of the critical habitat of SAR and may impose restrictions on development and construction.Critical habitats were assembled by SARA regional biologists and recovery teams. They are designed to support the protection and recovery of species listed as Endangered or Threatened under the Species at Risk Act. They are also described and displayed in species' Recovery Documents and Action Plans.Visit 'Critical Habitat of Species at Risk' for more information.Update Frequency: Annually
IMPORTANT NOTICE This item has moved to a new organization and entered Mature Support on February 3rd, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 27th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here Flood maps are created by combining hydraulic model results with high-accuracy ground information. Field surveys and LiDAR remote sensing are used to collect river and floodplain elevations, channel cross section data, bridge and culvert information, and flood berm details. A hydrology assessment using recorded and historic flow measurements is typically used to estimate river flows for a wide range of possible open water floods with different chances of occurring each year. When appropriate, an ice jam frequency analysis is undertaken. All this information is used to build a hydraulic model of a river system, which is calibrated using highwater marks and aerial imagery from past floods to ensure that results for the different flood flows being mapped are reasonable. Flood inundation maps show areas at risk for different sized floods, including ice jam floods in some communities. These maps also identify areas that could be flooded if berms or other flood control structures fail and are typically used for emergency response planning and to inform local infrastructure design. Flood hazards have not been identified along all rivers or through all communities, and it is important to remember that risk exists in areas without provincial flood maps. Visit www.floodhazard.alberta.ca for more information about the Flood Hazard Identification Program. The website includes different sections for final flood studies and for draft flood studies. Flood maps can be viewed directly using the Flood Awareness Map Application at floods.alberta.ca. The Alberta Flood Mapping GIS dataset is updated when new information is available or existing information changes; therefore, the Government of Alberta assumes no responsibility for discrepancies at the time of use.Posted on 2020-12-22 to GeoDiscover Alberta by Alberta Environment and Parks.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. The Alberta Merged Wetlands Inventory is used to identify and describe the current coverage of wetlands within Alberta to the level of the five major Canadian Wetland Classification System classes. This information is used to evaluate the status of wetlands at a regional level. The wetland inventory dataset is not intended to replace site specific or local information to describe wetland type, area and location. This dataset is produced for the Government of Alberta and is available to the general public. Please consult the Distribution Information of this metadata for the appropriate contact to acquire this dataset.The Alberta Merged Wetland Inventory depicts wetlands within the province of Alberta, Canada for the period 1998 to 2017 classified to the five major classes in the Canadian Wetland Classification System (CWCS). These five major classes include bog, fen, marsh, swamp and shallow open water. For the purposes of this inventory, shallow open water includes all open water. The Alberta Merged Wetland Inventory is a generalized, merged product of 35 component wetland inventories that utilized different types of source data from different years, different data capture specifications and different classifications. Considerable variation in the level of detail and accuracy is present in this dataset. Accuracy assessments have been included where available but it should be noted that the geoprocessing applied to the data may have introduced additional error. Note that the Alberta Merged Wetland Inventory product replaces the previously released Alberta Merged Wetland Inventory from October 23, 2018. The funding partners for the component inventories include: Ducks Unlimited Canada; Ducks Unlimited Inc.; Government of Alberta (Environment and Parks); United States Forest Service (USFS); United States Fish and Wildlife Service (USFWS); North American Waterfowl Conservation Act (NAWCA); The PEW Charitable Trusts; Canadian Boreal Initiative; Alberta-Pacific Forest Products Inc. (ALPAC); Environment Canada; Canadian Space Agency; Lakeland Industry and Community Association (LICA); Imperial Oil Resources; Shell Canada; Suncor Energy Foundation; Weyerhaeuser Company Limited; Encana Corporation and Parks Canada (Wood Buffalo National Park). Purpose of this dataset: To identify and describe the current coverage of wetlands within Alberta to the level of the five major Canadian Wetland Classification System classes. USE LIMITATION: This information is used to evaluate the status of wetlands at a regional level. The wetland inventory dataset should not be used for any purpose beyond general reference at the provincial or regional scale and is not intended to replace site specific or local information to describe wetland type, area and location.The funding partners for the component inventories include: Ducks Unlimited Canada; Ducks Unlimited Inc.; Government of Alberta (Environment and Parks); United States Forest Service (USFS); United States Fish and Wildlife Service (USFWS); North American Waterfowl Conservation Act (NAWCA); The PEW Charitable Trusts; Canadian Boreal Initiative; Alberta-Pacific Forest Products Inc. (ALPAC); Environment Canada; Canadian Space Agency; Lakeland Industry and Community Association (LICA); Imperial Oil Resources; Shell Canada; Suncor Energy Foundation; Weyerhaeuser Company Limited; and Encana Corporation.See Standards and Guidelines for more information.Source: Alberta Merged Wetland Inventory
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and entered Mature Support on February 3rd, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 27th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here Stations containing prime movers, electric generators, and auxiliary equipment for converting mechanical, chemical into electric energy with an installed capacity of 1 Megawatt or more generated from renewable energy, including biomass, hydroelectric, pumped-storage hydroelectric, geothermal, solar, wind, and tidal.Mapping Resources implemented as part of the North American Cooperation on Energy Information (NACEI) between the Department of Energy of the United States of America, the Department of Natural Resources of Canada, and the Ministry of Energy of the United Mexican States. The participating Agencies and Institutions shall not be held liable for improper or incorrect use of the data described and/or contained herein. These data and related graphics, if available, are not legal documents and are not intended to be used as such. The information contained in these data is dynamic and may change over time and may differ from other official information. The Agencies and Institutions participants give no warranty, expressed or implied, as to the accuracy, reliability, or completeness of these data. Maintenance and Update Frequency: As NeededFor more information visit Renewable Energy Power Plants
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on April 17th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on June 17th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. The Canadian Environmental Sustainability Indicators (CESI) program provides data and information to track Canada's performance on key environmental sustainability issues. The Greenhouse Gas Reporting Program ensures that greenhouse gas emissions from Canada's largest emitters are measured and reported. This mandatory reporting contributes to the development, implementation and evaluation of climate change and energy policies and strategies in Canada. Greenhouse gas emissions data reported through the Greenhouse Gas Reporting Program are used, where appropriate, to confirm the reasonableness of estimates of greenhouse gas emissions in Canada in the National Inventory Report. Information is provided to Canadians in a number of formats including: static and interactive maps, charts and graphs, HTML and CSV data tables and downloadable reports. See the supplementary documentation for the data sources and details on how the data were collected and how the indicator was calculated.The latest reporting year (2021) coincides with the second year of the COVID-19 pandemic, which affected a wide range of industrial sectors. The results must be interpreted in the context of the pandemic impacting facility operations in 2020 and 2021 to some extent (for example, production slow-downs and reduced demand) but other non-pandemic related factors also contributed to observed emission changes (such as, lower coal consumption and fuel switching).For more information: Greenhouse gas reporting: facilitiesGreenhouse gas emissions from large facilities