Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
Facebook
TwitterCreated in the method described here: https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/vintage-shaded-relief-basemap/. Scintillating backstory here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/how-to-smash-vintage-hillshade-into-modern-imagery/This basemap extends from zoom levels 0 - 9, though levels 8 and 9 are pixelated and primarily intended to be a transitional hand-off to a small scale tile set, like World Imagery. See this transition in the example web map here: https://nation.maps.arcgis.com/home/webmap/viewer.html?webmap=ccbfec91e19d4f9fb0769af361c31516The hillshade is an extract of the darkest and lightest tones in this vintage mid-century shaded relief plate hand painted by Kenneth Townsend. Mid-tones are transparent to permit a visual pass-through of an underlying satellite imagery layer. Another, unaltered, instance of this shaded relief plate is shown at 80% transparency to provide painterly hues and texture. Mr. Townsend's source plate is available as a georeferenced TIFF file at https://www.shadedreliefarchive.com/world_townsend1.htmlLearn more about this, and other, shaded relief via the archive, maintained by Tom Patterson and Bernhard Jenny, here: https://www.shadedreliefarchive.com/about.htmlThe underlying satellite imagery is derived from the NASA blue marble project's Visible Earth mosaics of cloud-free imagery, available here: https://visibleearth.nasa.gov/view.php?id=73826Cartographic layers, such as the oceans overlay, graticule, and lakes and rivers, are a combination of custom layers and content sourced from Natural Earth. Their pencil strokes and paper texture backgrounds can be found in the ArcGIS Pro Watercolor style, available here: https://esri-styles.maps.arcgis.com/home/item.html?id=936edb7f57334763a8247d1019a9de51Happy Vintage Basemapping! John Nelson
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This ArcGIS Online hosted feature service displays perimeters from the National Incident Feature Service (NIFS) that meet ALL of the following criteria:
Facebook
TwitterCreated in the method described here: https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/vintage-shaded-relief-basemap/. Scintillating backstory here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/how-to-smash-vintage-hillshade-into-modern-imagery/This basemap extends from zoom levels 0 - 9, though levels 8 and 9 are pixelated and primarily intended to be a transitional hand-off to a small scale tile set, like World Imagery. See this transition in the example web map here: https://nation.maps.arcgis.com/home/webmap/viewer.html?webmap=ccbfec91e19d4f9fb0769af361c31516The hillshade is an extract of the darkest and lightest tones in this vintage mid-century shaded relief plate hand painted by Kenneth Townsend. Mid-tones are transparent to permit a visual pass-through of an underlying satellite imagery layer. Another, unaltered, instance of this shaded relief plate is shown at 80% transparency to provide painterly hues and texture. Mr. Townsend's source plate is available as a georeferenced TIFF file at https://www.shadedreliefarchive.com/world_townsend1.htmlLearn more about this, and other, shaded relief via the archive, maintained by Tom Patterson and Bernhard Jenny, here: https://www.shadedreliefarchive.com/about.htmlThe underlying satellite imagery is derived from the NASA blue marble project's Visible Earth mosaics of cloud-free imagery, available here: https://visibleearth.nasa.gov/view.php?id=73826Cartographic layers, such as the oceans overlay, graticule, and lakes and rivers, are a combination of custom layers and content sourced from Natural Earth. Their pencil strokes and paper texture backgrounds can be found in the ArcGIS Pro Watercolor style, available here: https://esri-styles.maps.arcgis.com/home/item.html?id=936edb7f57334763a8247d1019a9de51Happy Vintage Basemapping! John Nelson
Facebook
TwitterThis map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap includes bathymetry, marine water body names, undersea feature names, and derived depth values in meters. Land features include administrative boundaries, cities, inland waters, roads, overlaid on land cover and shaded relief imagery.
The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and DeLorme, HERE, and Esri for topographic content. The basemap was designed and developed by Esri.
The Ocean Basemap currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details, see the Community Maps Program.
Tip: Here are some famous oceanic locations as they appear in this map. Each URL below launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterCreated at request of City of Columbia Utilities for the public to look up the days their recycling will be picked up.City of Columbia Utilities, Public Information Specialist, M. Nestor is the point of contact and creates the calendar images bi monthly to be manually added to this application.Notes: Currently the application requires manually updating the calendar image used in the popups for the application. Images are created and provided by Matt Nestor bi-monthly. Images are uploaded to ArcGIS Online as a hosted item. Please review Recycling Route App Notes for documentation on this work flow. Web Map URL:https://gocolumbiamo.maps.arcgis.com/apps/mapviewer/index.html?webmap=0f1d3817cd4345f88b6cc06a8f53776b Hosted Feature Layer:https://gocolumbiamo.maps.arcgis.com/home/item.html?id=a78718144c2444599daea94dde555cdd Image URLhttps://gocolumbiamo.maps.arcgis.com/home/item.html?id=60472f47114343d48306d88b5bbe2087
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Facebook
TwitterProject and planning boundaries for transportation plans.Web Map: https://seattlecitygis.maps.arcgis.com/apps/mapviewer/index.html?webmap=6b9178af77e1445d8df230795f0f2c55Contact: Policy and Planning team
Facebook
TwitterThe map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.
Facebook
TwitterTHIS LAYER IS HOSTED BY FEMA, not NAPSG Foundation. We are simply pointing to their layer with this ArcGIS Online item. The National Flood Hazard Layer (NFHL) dataset represents the current effective flood data for the country, where maps have been modernized. It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and Letters of Map Change (LOMCs). The NFHL is updated as studies go effective. For more information, visit FEMA's Map Service Center (MSC). You can view this information in a standalone viewer here: https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cdREST URL: https://hazards.fema.gov/gis/nfhl/rest/services/public/NFHL/MapServerBase Map ConsiderationsThe default base map is from an ESRI service and conforms to FEMA's specification for horizontal accuracy. This base map is composed of the orthoimagery used when the Flood Insurance Rate Maps (FIRMs) were initially created combined with standard imagery products managed by ESRI. This map should be considered the best online resource to use for official National Flood Insurance Program (NFIP) purposes when determining locations in relation to regulatory flood hazard information. If a different base map is used with the NFHL, the accuracy specification may not be met and the resulting map should be used for general reference only, and not official NFIP purposes.Further InformationFor more flood map data, tool, and viewing options, visit the FEMA NFHL page.Several fact sheets are available to help you learn more about FEMA’s NFHL utility: National Flood Hazard Layer (NFHL) GIS Services Users GuideNational Flood Hazard Layer (NFHL): New Products and Services for FEMA's Flood Hazard Map DataNFHL GIS Data: Perform Spatial Analyses and Make Custom Maps and Reports
Facebook
TwitterHosted feature layer containing point and polygon geometries with attributes displaying various types of governmental services in East Baton Rouge Parish, Louisiana. This data is displayed in the My Government Services Map web map at https://ebrgis.maps.arcgis.com/home/webmap/viewer.html?webmap=c3999fe0bd564c6bb24b64136cd91520.
Facebook
TwitterThe Street Addressing instant app displays all address points in East Baton Rouge Parish, Louisiana. It has been configured using the Sidebar template.The Street Addresses web map athttps://ebrgis.maps.arcgis.com/home/webmap/mapviewer.html?webmap=2e03423a9d614da19b18472a9e0c5f79is the underlying basis for theStreet Addressing instant app.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterThis map presents transportation data, including highways, roads, railroads, and airports for the world.
The map was developed by Esri using Esri highway data; Garmin basemap layers; HERE street data for North America, Europe, Australia, New Zealand, South America and Central America, India, most of the Middle East and Asia, and select countries in Africa. Data for Pacific Island nations and the remaining countries of Africa was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.
You can add this layer on top of any imagery, such as the Esri World Imagery map service, to provide a useful reference overlay that also includes street labels at the largest scales. (At the largest scales, the line symbols representing the streets and roads are automatically hidden and only the labels showing the names of streets and roads are shown). Imagery With Labels basemap in the basemap dropdown in the ArcGIS web and mobile clients does not include this World Transportation map. If you use the Imagery With Labels basemap in your map and you want to have road and street names, simply add this World Transportation layer into your map. It is designed to be drawn underneath the labels in the Imagery With Labels basemap, and that is how it will be drawn if you manually add it into your web map.
Facebook
TwitterDetroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.
Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.
Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.
LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.
Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains files created, digitized, or georeferenced by Chris DeRolph for mapping the pre-urban renewal community within the boundaries of the Riverfront-Willow St. and Mountain View urban renewal projects in Knoxville TN. Detailed occupant information for properties within boundaries of these two urban renewal projects was extracted from the 1953 Knoxville City Directory. The year 1953 was chosen as a representative snapshot of the Black community before urban renewal projects were implemented. The first urban renewal project to be approved was the Riverfront-Willow Street project, which was approved in 1954 according to the University of Richmond Renewing Inequality project titled ‘Family Displacements through Urban Renewal, 1950-1966’ (link below in the 'Other shapefiles' section). For ArcGIS Online users, the shapefile and tiff layers are available in AGOL and can be found by clicking the ellipsis next to the layer name and selecting 'Show item details' for the layers in this webmap https://knoxatlas.maps.arcgis.com/apps/webappviewer/index.html?id=43a66c3cfcde4f5f8e7ab13af9bbcebecityDirectory1953 is a folder that contains:JPG images of 1953 City Directory for street segments within the urban renewal project boundaries; images collected at the McClung Historical CollectionTXT files of extracted text from each image that was used to join occupant information from directory to GIS address datashp is a folder that contains the following shapefiles:Residential:Black_owned_residential_1953.shp: residential entries in the 1953 City Directory identified as Black and property ownersBlack_rented_residential_1953.shp: residential entries in the 1953 City Directory identified as Black and non-owners of the propertyNon_Black_owned_residential_1953.shp: residential entries in the 1953 City Directory identified as property owners that were not listed as BlackNon_Black_rented_residential_1953.shp: residential entries in the 1953 City Directory not listed as Black or property ownersResidential shapefile attributes:cityDrctryString: full text string from 1953 City Directory entryfileName: name of TXT file that contains the information for the street segmentsOccupant: the name of the occupant listed in the City Directory, enclosed in square brackets []Number: the address number listed in the 1953 City DirectoryBlackOccpt: flag for whether the occupant was identified in the City Directory as Black, designated by the (c) or (e) character string in the cityDrctryString fieldOwnerOccpd: flag for whether the occupant was identified in the City Directory as the property owner, designated by the @ character in the cityDrctryString fieldUnit: unit if listed (e.g. Apt 1, 2d fl, b'ment, etc)streetName: street name in ~1953Lat: latitude coordinate in decimal degrees for the property locationLon: longitude coordinate in decimal degrees for the property locationrace_own: combines the BlackOccpt and OwnerOccpd fieldsmapLabel: combines the Number and Occupant fields for map labeling purposeslastName: occupant's last namelabelShort: combines the Number and lastName fields for map labeling purposesNon-residential:Black_nonResidential_1953.shp: non-residential entries in the 1953 City Directory listed as Black-occupiedNonBlack_nonResidential_1953.shp: non-residential entries in the 1953 City Directory not listed as Black-occupiedNon-residential shapefile attributes:cityDrctryString: full text string from 1953 City Directory entryfileName: name of TXT file that contains the information for the street segmentsOccupant: the name of the occupant listed in the City Directory, enclosed in square brackets []Number: the address number listed in the 1953 City DirectoryBlackOccpt: flag for whether the occupant was identified in the City Directory as Black, designated by the (c) or (e) character string in the cityDrctryString fieldOwnerOccpd: flag for whether the occupant was identified in the City Directory as the property owner, designated by the @ character in the cityDrctryString fieldUnit: unit if listed (e.g. Apt 1, 2d fl, b'ment, etc)streetName: street name in ~1953Lat: latitude coordinate in decimal degrees for the property locationLon: longitude coordinate in decimal degrees for the property locationNAICS6: 2022 North American Industry Classification System (NAICS) six-digit business code, designated by Chris DeRolph rapidly and without careful considerationNAICS6title: NAICS6 title/short descriptionNAICS3: 2022 North American Industry Classification System (NAICS) three-digit business code, designated by Chris DeRolph rapidly and without careful considerationNAICS3title: NAICS3 title/short descriptionflag: flags whether the occupant is part of the public sector or an NGO; a flag of '0' indicates the occupant is assumed to be a privately-owned businessrace_own: combines the BlackOccpt and OwnerOccpd fieldsmapLabel: combines the Number and Occupant fields for map labeling purposesOther shapefiles:razedArea_1972.shp: approximate area that appears to have been razed during urban renewal based on visual overlay of usgsImage_grayscale_1956.tif and usgsImage_colorinfrared_1972.tif; digitized by Chris DeRolphroadNetwork_preUrbanRenewal.shp: road network present in urban renewal area before razing occurred; removed attribute indicates whether road was removed or remains today; historically removed roads were digitized by Chris DeRolph; remaining roads sourced from TDOT GIS roads dataTheBottom.shp: the approximate extent of the razed neighborhood known as The Bottom; digitized by Chris DeRolphUrbanRenewalProjects.shp: boundaries of the East Knoxville urban renewal projects, as mapped by the University of Richmond's Digital Scholarship Lab https://dsl.richmond.edu/panorama/renewal/#view=0/0/1&viz=cartogram&city=knoxvilleTN&loc=15/35.9700/-83.9080tiff is a folder that contains the following images:streetMap_1952.tif: relevant section of 1952 map 'Knoxville Tennessee and Surrounding Area'; copyright by J.U.G. Rich and East Tenn Auto Club; drawn by R.G. Austin; full map accessed at McClung Historical Collection, 601 S Gay St, Knoxville, TN 37902; used as reference for street names in roadNetwork_preUrbanRenewal.shp; georeferenced by Chris DeRolphnewsSentinelRdMap_1958.tif: urban renewal area map from 1958 Knox News Sentinel article; used as reference for street names in roadNetwork_preUrbanRenewal.shp; georeferenced by Chris DeRolphusgsImage_grayscale_1956.tif: May 18, 1956 black-and-white USGS aerial photograph, georeferenced by Chris DeRolph; accessed here https://earthexplorer.usgs.gov/scene/metadata/full/5e83d8e4870f4473/ARA550590030582/usgsImage_colorinfrared_1972.tif: April 18, 1972 color infrared USGS aerial photograph, georeferenced by Chris DeRolph; accessed here https://earthexplorer.usgs.gov/scene/metadata/full/5e83d8e4870f4473/AR6197002600096/usgsImage_grayscale_1976.tif: November 8, 1976 black-and-white USGS aerial photograph, georeferenced by Chris DeRolph; accessed here https://earthexplorer.usgs.gov/scene/metadata/full/5e83d8e4870f4473/AR1VDUT00390010/
Facebook
TwitterThis map features the World Imagery map, focused on the Carribean region. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. DigitalGlobe sub-meter imagery is featured in many parts of the world, including Africa. Sub-meter Pléiades imagery is available in select urban areas. Additionally, imagery at different resolutions has been contributed by the GIS User Community.
For more information on this map, view the World Imagery item description.
Metadata: This service is metadata-enabled. With the Identify tool in ArcMap or the World Imagery with Metadata web map, you can see the resolution, collection date, and source of the imagery at the location you click. Values of "99999" mean that metadata is not available for that field. The metadata applies only to the best available imagery at that location. You may need to zoom in to view the best available imagery.
Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Conception to Hueneme Canyon map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Conception to Hueneme Canyon map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8