The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
These are the zoning overlays are found in City Code Chapter 67, as well as the Height Districts found in Chapter 63. Other major zoning overlays are not found here but are organized as stand-alone layers, including the Floodplain Management Overlay Districts Mississippi River Corridor Critical Area Overlay Districts (both current and future versions), and Special Sign Overlay Districts.This data allows mapping of ten overlay districts:EG East Grand Avenue Overlay DistrictH1 Height District Area IH2 Height District Area IIH3 Height District Area IIIHV Hillcrest Village Overlay DistrictSF-P State Fair Parking Overlay DistrictSF-V State Fair Vending Overlay DistrictSH Student Housing Neighborhood Overlay DistrictTP Tree Preservation Overlay DistrictWB White Bear Avenue Overlay DistrictAttributes (Fields) Defined:Zoning: The shorthand for the zoning district, generally a combination of two or three letters and numbers.Zoning Name: The name of the zoning district.Zoning Description: A description of the zoning district, written in HTML, intended for use in the popup in ArcGIS Online.Notes: Notes on the zoning designation.
Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, with patching from summer of 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
MRGP NewsIf you already have an ArcGIS named user, join the MRGP Group. Doing so allows you complete the permit requirements under your organization's umbrella. As a group member you get access to the all the MRGP items without having to log-in and log-out. If you don’t have an ArcGIS member account please contact Chad McGann (MRGP Program Lead) at 802-636-7239 or your Regional Planning Commission’s Transportation Planner. April 9, 2025. Conditional logic in webform for the newly published Open Drainage Survey was not calculating properly leading to some records with "Undetermined" status and priority. Records have been rescored and survey was republished with corrective logic. Field App version not impacted.March 11, 2025. The Road Erosion Inventory Survey123 questions for Open Drainage Roads are being streamlined to make assessments faster. Coming April 1st, the survey will be changed to only ask if there is erosion depending on if the corresponding practice type is failing. This aims at using erosion as an indicator to measure the success of each of the four Open Drainage road elements to handle stormwater: crown, berm, drainage, turnout.March 29, 2023. For MRGP permitting, Lyndonville Village (GEOID 5041950) has merged with Lyndonville Town (GEOID 5000541725). 121 segments and 14 outlets have been updated to reflect the administrative change. December 8, 2023. The Open Drainage Road Inventory survey has been updated for the 2024 field season. We added and modified a few notes for clarification and corrected an issue with users submitting incomplete surveys. See FAQ section below for how to delete the old survey and download the new one. The app will notify you there's an update, and execute it, but we've experienced select-one questions with duplicate entries.November 29, 2023. The Closed Drainage Road Inventory survey has been updated for the 2024 field season. There's a new outlet status option called "Not accessible" and conditional follow-up question. This has been added to support MS4 requirements. See FAQ section below for how to delete the old survey and download the new one. The app will notify you there's an update and execute it for you but we've experienced select-one questions with duplicate entries. Reporter for MRGPThe Reporter for MRGP doesn't require you to download any apps to complete an inventory; all you need is an internet connection and web browser. The Reporter includes culverts and bridges from VTCULVERTS, town highways from Vtrans, current status for MRGP segments and outlets and second cycle progress. The Reporter is a great way to submit work completed to meet the MRGP standards. MRGP Fieldworker SolutionStep 1: Download the free mobile appsFor fieldworkers to collect and submit data to VT DEC, two free apps are required: ArcGIS Field Maps and Survey123. ArcGIS Field Maps is used first to locate the segment or outlet for inventory, and Survey123, for completing the Road Erosion Inventory.• You can download ArcGIS Fields Maps and Survey123 from the Google Play Store.• You can download ArcGIS Field Maps and Survey123 from Apple Store.Step 2: Sign into the mobile appYou will need appropriate credentials to access fieldworker solution, Please contact your Regional Planning Commission’s Transportation Planner or Chad McGann (MRGP Program Lead) at 802-636-7239.Open Field Maps, select ‘ArcGIS Online’ as shown below, and enter the user name and password. The credential is saved unless you sign out. Step 3: Open the MRGP Mobile MapIf you’re working in an area that has a reliable data connection (e.g. LTE or 4G), open the map below by selecting it.Step 4: Select a road segment or outlet for inventoryUsing your location, highlighted in red below, select the segment or outlet you need to inventory, and select 'Update Road Segment Status' from the pop-up to launch Survey123.
Step 5: Complete the Road Erosion Inventory and submit inventory to DECSelecting 'Update Road Segment Status' opens Survey123, downloads the relevant survey and pre-populates the REI with important information for reporting to DEC. You will have to enter the same username and password to access the REI forms. The credential is saved unless you sign out of Survey123.Complete the survey using the appropriate supplement below and submit the assessment directly to VT DEC.Paved Roads with Catch Basin SupplementPaved and Gravel Roads with Drainage Ditches Supplement
Step 6: Repeat!Go back to the ArcGIS Field Maps and select the next segment for inventory and repeat steps 1-5.
If you have question related to inventory protocol reach out to Chad McGann, MRGP Program Lead, at chad.mcgann@vermont.gov, 802-636-7396.If you have questions about implementing the mobile data collection piece please contact Ryan Knox, ADS-ANR IT, at ryan.knox@vermont.gov, (802) 793-0297
How do I update a survey when a new one is available?While the Survey123 app will notify you and update it for you, we've experienced some select-one questions having duplicate choices. It's a best practice to delete the old survey and download the new one. See this document for step-by-step instructions.I already have an ArcGIS member account with my organization, can I use it to complete MRGP inventories?Yes! The MRGP solution is shared within an ArcGIS Group that allows outside organizations. Click "join this group" and send an request to the ANR GIS team. This will allow you complete MRGP requirements for the REI and stay logged into your organization. Win-win situation for us both!AGOL Group: https://www.arcgis.com/home/group.html?id=027e1696b97a48c4bc50cbb931de992d#overviewThe location where I'm doing inventory does not have data coverage (LTE or 4G). What can I do?ArcGIS Field Maps allows you take map areas offline when you think there will be spotty or no data coverage. I made a video to demonstrate the steps for taking map areas offline - https://youtu.be/ScpQnenDp7wSurvey123 operates offline by default but you need to download the survey. My recommendation is to test the fieldworker solution (Steps 1-5) before you go into the field but don't submit the test survey.How do remove an offline area and create a new one? Check out this how-to document for instructions. Delete and Download Offline AreaWhere can I download the Road Erosion Scoring shown on the the Atlas? You can download the scoring for both outlets and road segments through the VT Open Geodata Portal.https://geodata.vermont.gov/search?q=mrgpHow do I use my own map for launching the official MRGP REI survey form? You can use the following custom url for launching Survey123, open the REI and prepopulate answers in the form. More information is here. TIP: add what's below directly in the HTML view of the popup not the link as described in the post I provided.
Segments (lines):Update Road Segment StatusOutlets (points):Update Outlet Status
How do I save my name and organization information used in subsequent surveys? Watch this short video or execute the steps below:
Open Survey123 and open a blank REI form (Collect button) Note: it's important to open a blank form so you don't save the same segment id for all your surveys Fill-in your 'Name' and 'Organization' and clear the 'Date of Assessment field' (x button). Using the favorites menu in the top-right corner you can use the current state of your survey to 'Set as favorite answers.' Close survey and 'Save this survey in Drafts.' Use Collector to launch survey from selected feature (segment or outlet). Using the favorites menu again, 'Paste answers from favorite.
What if the map doesn't have the outlet or road segment I need to inventory for the MRGP? Go Directly to Survey123 and complete the appropriate Road Erosion Inventory and submit the data to DEC. The survey includes a Geopoint (location) that we can use to determine where you completed the inventory.
Where can I view the Road Erosion Inventories completed with Survey123? Use the web map below to view second cycle inventories completed with Survey123. The first cycle inventories can be downloaded below. First cycle inventories are those collected 2018-2022.Web map - Completed Road Erosion Inventories for MRGPWhere can I download the 2020-2022 data collected with Survey123?Road Segments (lines) - https://anrmaps.vermont.gov/websites/MRGP/MRGP2020_segments.zipOutlets (points) - https://anrmaps.vermont.gov/websites/MRGP/MRGP2020_outlets.zipWhere can I download the 2019 data collected with Survey123?
Road Segments (lines) -
On January 25, 2018 FEMA replaced this map with a new NFHL map with additional functionality which allows users to print official flood maps. On April 1, 2018 this map and NFHL link will no longer function. Please update your bookmark to https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd. For more information on NFHL data availability, please visit the NFHL GIS Services page at https://hazards.fema.gov/femaportal/wps/portal/NFHLWMSAs of August 1, 2017 all FEMA systems will require the use of the “https” protocol, and “http” links will no longer function. This may impact NFHL web services. The FEMA GeoPlatform (including this map) will not be affected by this change. For more information on how NFHL GIS services will be impacted, please visit the NFHL GIS Services page at https://hazards.fema.gov/femaportal/wps/portal/NFHLWMS.An NFHL FIRMette print service is now available HERE. (For a video tutorial, click here.)OverviewThe National Flood Hazard Layer (NFHL) dataset represents the current effective flood data for the country, where maps have been modernized. It is a compilation of effective Flood Insurance Rate Map (FIRM) databases and Letters of Map Change (LOMCs). The NFHL is updated as studies go effective. For more information, visit FEMA's Map Service Center (MSC). Base Map ConsiderationsThe default base map is from a USGS service and conforms to FEMA's specification for horizontal accuracy. This base map from The National Map (TNM) consists of National Agriculture Imagery Program (NAIP) and high resolution orthoimagery (HRO) that combine the visual attributes of an aerial photograph with the spatial accuracy and reliability of a map. This map should be considered the best online resource to use for official National Flood Insurance Program (NFIP) purposes when determining locations in relation to regulatory flood hazard information. If a different base map is used with the NFHL, the accuracy specification may not be met and the resulting map should be used for general reference only, and not official NFIP purposes. Users can download a simplified base map from the USGS service via: https://viewer.nationalmap.gov/services/ For the specifics of FEMA’s policy on the use of digital flood hazard data for NFIP purposes see: http://www.fema.gov/library/viewRecord.do?id=3235Letter of Map Amendment (LOMA) pointsLOMA point locations are approximate. The location of the LOMA is referenced in the legal description of the letter itself. Click the LOMA point for a link to the letter (use the arrows at the top of the popup window to bring up the LOMA info, if needed).This LOMA database may include LOMAs that are no longer effective. To be certain a particular LOMA is currently valid, please check relevant documentation at https://msc.fema.gov/ . Relevant documents can be found for a particular community by choosing to "Search All Products", and finding the community by State and County. Documents include LOMAs found in the "Effective Products" and "LOMC" folders, as well as Revalidations (those LOMAs which are still considered to be effective after a map is revised).Updates3/27/2017 - Updated all references to https to prevent issues with mixed content.5/11/2016 - Added link to NFHL FIRMette Print Service. Updated LOMA and CBRS popup notes.2/20/2014 - Created a General Reference map for use when the USGS base map service is down. Renamed this map to "Official".Further InformationSpecific questions about FEMA flood maps can be directed to FEMAMapSpecialist@riskmapcds.comFor more flood map data, tool, and viewing options, visit the FEMA NFHL page. Information about connecting to web map services (REST, WMS, WFS) can be found here.Several fact sheets are available to help you learn more about FEMA’s NFHL utility: National Flood Hazard Layer (NFHL) GIS Services Users GuideNational Flood Hazard Layer (NFHL): New Products and Services for FEMA's Flood Hazard Map DataMoving to Digital Flood Hazard Information Standards for Flood Risk Analysis and MappingNFHL GIS Data: Perform Spatial Analyses and Make Custom Maps and Reports
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This data shows safety zones around the two nearby airports – Minneapolis-Saint Paul International Airport and Holman Field Airport. These safety zones are not currently adopted into the Saint Paul Zoning Code, but are applicable as state and/or federal regulation, and provided here for informational purposes only.Attributes (Fields) Defined:Zoning: The shorthand for the zoning district, generally a combination of two or three letters and numbers.Zoning Name: The name of the zoning district.Zoning Description: A description of the zoning district, written in HTML, intended for use in the popup in ArcGIS Online.Notes: Notes on the zoning designation.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
These are districts that are defined and referred to in the City's Zoning Code, as outlined in Chapter 64.600 Special Sign Districts. These districts were created to regulate signage in a more specific way than what is provided in the existing zoning code. In many cases, these districts were created specifically to prohibit off-premises advertising signs (billboards); since many of these districts were created, the establishment of new off premises advertising signs has been prohibited citywide. Of note, several of the districts (Merriam Park, Snelling-Hamline and North End/South Como) follow old planning district boundaries that are no longer current. These sign district boundaries follow the old district lines, but their respective planning districts and district councils follow new boundaries, which are shared elsewhere through City GIS.Overlay districts:There are currently 17 special sign districts, or 20 if you include count the four subareas of the Greater East Side separately. These districts include sometimes overlapping geographies:Dayton's Bluff; Downtown; Grand Avenue; Greater East Side (including Arcade Street, Payne Avenue, Phalen Corridor/Phalen Village, and White Bear Avenue subareas); Hamline Midway; Highland Village; Macalester-Groveland; Merriam Park; North End/South Como; Shepard Davern; Smith Avenue; Snelling Hamline; Saint Anthony Park; Sunray-Battle Creek-Highwood; Tomas/Dale District 7; West Side; and White Bear Avenue.Attributes (Fields) Defined:Zoning: The shorthand for the zoning district, generally a combination of two or three letters and numbers.Zoning Name: The name of the zoning district.Zoning Description: A description of the zoning district, written in HTML, intended for use in the popup in ArcGIS Online.Notes: Notes on the zoning designation.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Floodplain Management Overlay Districts are designed to guide floodplain development in order to lessen the adverse effects of floods and to comply with the rules and regulations of the National Flood Insurance Program. The data allows mapping of areas regulated as floodway and flood fringe under the Saint Paul Zoning Code Chapter 72, Floodplain Management Overlay Districts.This data allows mapping of two districts:FW FloodwayFF Flood FringeAttributes (Fields) Defined:Zoning: The shorthand for the zoning district, generally a combination of two or three letters and numbers.Zoning Name: The name of the zoning district.Zoning Description: A description of the zoning district, written in HTML, intended for use in the popup in ArcGIS Online.Notes: Notes on the zoning designation.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Megan Banaski (mbanaski@esri.com) and Max Ozenberger (mozenberger@esri.com)Last Updated: 1/1/2024Intended Environment: WebPurpose:Exercise E5: Style layer popup This lab is part of GitHub repository that contains short labs that step you through the process of developing a web application with ArcGIS API for JavaScript.The labs start from ground-zero and work through the accessing different aspects of the API and how to begin to build an application and add functionality.Requirements: Here are the resources you will use for the labs.ArcGIS for Developers - Account, Documentation, Samples, Apps, DownloadsEsri Open Source Projects - More source codeA simple guide for setting up a local web server (optional)Help with HTML, CSS, and JavaScript
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This data delineates the districts set forth in Chapter 68 of Saint Paul City Code, focused on the Mississippi River Corridor Critical Area (MRCCA). Chapter 68 also currently contains floodplain standards which are technically still binding, but have been functionally replaced by the standards set forth in Chapter 72, Floodplain Management Overlay Districts. The River Corridor Overlay District and its subclassifications, RC1, RC2, RC3, RC4, are map overlay districts, designed to provide comprehensive floodplain and river bluff management for the city in accordance with the policies of Minnesota Statutes (Chapters 103 and 116G), Minnesota Regulations (MEQC 54) and Governor's Executive Order No. 79-19.The MRCCA is a land corridor along the Mississippi River in the seven-county metro area in which special land use regulations guide development activity. The corridor extends 72 miles along the Mississippi River from the cities of Ramsey and Dayton in the north to the City of Hastings and Ravenna Township in the south. It includes 54,000 acres of land along both sides of the river. The State of Minnesota created the corridor and land use regulations in 1976. Local governments administer the regulations through their local plans and zoning ordinances.The MRCCA is home to a full range of residential neighborhoods and parks, as well as river-related commerce, industry, and transportation. Though the MRCCA has been extensively developed, many intact and remnant natural areas remain, including bluffs, islands, foodplains, wetlands, riparian zones, and native aquatic and terrestrial flora and fauna.New rules regulating the MRCCA were published on December 27, 2016 and became effective January 4, 2017. Those new rules and these districts will not apply to Saint Paul until Saint Paul updates its zoning code to conform to the new state rules, which has not been initiated as of April 2018, a process which will take many months to complete. This text should be updated at the time the rules are put into effect. A separate layer shows these future overlay districts. But the districts shown in this layer you are currently looking at are the ones which are currently applicable within the Mississippi River Corridor Critical Area in the City of Saint Paul.This data allows mapping of seven districts:RC1 River Corridor Floodway Overlay DistrictRC2 River Corridor Flood Fringe Overlay DistrictRC3 River Corridor Urban Open Overlay DistrictRC4 River Corridor Urban Diversified Overlay DistrictAttributes (Fields) Defined:Zoning: The shorthand for the zoning district, generally a combination of two or three letters and numbers.Zoning Name: The name of the zoning district.Zoning Description: A description of the zoning district, written in HTML, intended for use in the popup in ArcGIS Online.Notes: Notes on the zoning designation.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.