In this tutorial, you will be introduced to the basics of the ArcGIS Online Web-based Geographic Information System (GIS) software tool. You will begin by exploring spatial data in the form of map layers that are available on the Web as well as map applications (apps). You will then use the ArcGIS Online Map Viewer to search for content, add features to a map, and save and share your completed map with others.
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this seminar, you will learn about the spatial analysis tools built directly into the ArcGIS.com map viewer. You will learn of the spatial analysis capabilities in ArcGIS Online for Organizations, whether for analyzing your own data, data that's publicly available on ArcGIS Online, or a combination of both. You will learn the overall features and benefits of ArcGIS Online Analysis, how to get started, and how to choose the right approach in order to solve a specific spatial problem.
Prior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.
To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.
In this lesson you will build skills in these areas:
Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Learn how to add points, lines and polygons within a sketch layer in the ArcGIS Online Map Viewer.
This tutorial focuses on some of the tools you can access in ArcGIS Online that cover proximity and hot spot analysis. This resource is part of the Career Path Series - GIS for Crime Analysis Lesson.Find other resources at k12.esri.ca/resourcefinder.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tutorial Audience: GIS / Technology SpecialistsEnd User Audience: Emergency Management Planning and Operations StaffProblem: Your County Emergency Management Agency is planning a training exercise and wants to make use of “Web GIS.” Typically, they have you print out a new wall map each operational period and the status of facilities (e.g. shelters) are maintained in spreadsheets. This time they want to coordinate planning and operations across multiple locations, with everyone having the most up to date information on a live map. For example, they want to be able update the status of evacuation zones and shelters without requiring GIS expertise. Can you provide them with a web app that gives them some simple tools and just the layers they need to get started? Use a simulated flood or any other incident type to guide you through this process.Solution: Operations Response AppRequirements: You will need a license for ArcGIS Pro and ArcGIS Online to complete this tutorial.Note: This application is used with the Public Information Application Tutorial.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This course demonstrates how to select, modify, create, and share web applications using ArcGIS Online. ArcGIS Online offers many different options for creating web applications that share web maps, web scenes, and spatial functions. But how do you decide which web application best meets your requirements? Each web application option implements different functions and showcases a specific look and feel. You can choose a web application that meets your organization's functional requirements, apply your organization's look and feel, and share your web map without writing any code.Two workflows will be introduced for creating web applications using ArcGIS Online:Applying your web map to an existing template applicationCreating your own web application using Web AppBuilder for ArcGISAfter completing this course, you will be able to do the following:Identify the components of a web application.Create a web application from an existing configurable app template.Create a web application using Web AppBuilder for ArcGIS.Use ArcGIS Online to deploy a web application.
ArcGIS Living Atlas of the World is a rich and growing collection of valuable geographic maps and data from organizations around the globe. Access to Living Atlas content is part of your ArcGIS Online organizational subscription. In this course, you will discover and use Living Atlas maps and layers that are ready to use for instruction. You will explore ways to connect Living Atlas content to the subjects that you teach.
Esri UK is providing a digital mapping platform and expertise in biodiversity mapping for the National Education Nature Park. We are providing the Department of Education with ArcGIS Online - an extensible web-based mapping platform to provide staff and students with geospatial tools that will allow them to view, capture, store, analyse and monitor environmental and biodiversity data. We are also providing Professional Services to be delivered using an agile methodology, along with training to key stakeholders.To deploy geospatial tools to all schools, we are using the existing ArcGIS for Schools program.
Mapping Our World Using GIS is a 1:1 set of instructional materials for teaching basic concepts found in middle school world geography. Each module consists of multiple files.
The Mapping Our World collection is at: http://esriurl.com/MOW.
All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries
This computer activity will show you how to start the ArcGIS Online program. You will be guided
through the basics of using ArcGIS Online map viewer to explore maps. After you do this activity, you will be prepared to complete other GIS activities.
Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
Enroll in this plan to understand ArcGIS Online capabilities, publish content to an ArcGIS Online organizational site, create web maps and apps, and review common ArcGIS Online administrative tasks.
Goals Access web maps, apps, and other GIS resources that have been shared to an ArcGIS Online organizational site. Publish GIS data as services to an ArcGIS Online organizational site. Create, configure, and share web maps and apps. Manage ArcGIS Online user roles and privileges.
This quick introductory tutorial allows you to discover some of the basic tasks in ArcGIS Online.Find more resources at k12.esri.ca/resourcefinder.
Locations Environmental Learning Centers operated by Seattle Parks.Refresh Cycle: WeeklyFeature Class: DPR.EnvEdCtr
This web map shows the location of early education and training centres in Hong Kong. It is a set of data made available by the Social Welfare Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Übersicht Haltestellen DB Station&Service AG. Dieser Datenbestand kann Fehler enthalten und/oder unvollständig sein. DB Station&Service AG übernimmt keine Haftung und leistet keinerlei Gewähr.Quelle: Open Data der Deutsche Bahn AG.Verarbeitungsprozesse: CSV Datei wurde in ArcGIS Pro importiert, georeferenziert, nach WebMercator projiziert und als Feature Service in ArcGIS Online veröffentlicht.
In this tutorial, you will be introduced to the basics of the ArcGIS Online Web-based Geographic Information System (GIS) software tool. You will begin by exploring spatial data in the form of map layers that are available on the Web as well as map applications (apps). You will then use the ArcGIS Online Map Viewer to search for content, add features to a map, and save and share your completed map with others.