If you have ever had an error message pop up in ArcGIS Online that mentions you have exceeded the user types in your account, watch this video to see how to resolve this issue.This video takes you through the steps of how to do change students and teachers user types on the rare occasion that you are required to change user types in your schools ArcGIS Online account.ArcGIS Online Administration.Video recorded - April 2020.
User guide for the ArcGIS Online Statewide Traffic Count AppThe guide covers essential aspects, including:Map Functions Overview: This section details the basic interactive functions of the map, including zooming, panning, and identifying features. It will explain how to navigate the map interface effectively, find specific locations, and understand the map's overall layout and controls. Turn Layers On and Off: This portion of the guide will teach users how to control the visibility of different data layers within the map. Users will learn how to toggle layers on and off to customize the map display, focusing on specific traffic count data or related information. This allows for a more focused analysis of the data. Attribute Table and Export Data: This section explains how to access and utilize the attribute table associated with the traffic count data. Users will learn how to view detailed information about each traffic count location, including specific count values, dates, and other relevant attributes. Furthermore, this section will instruct how to export the attribute table data into formats like CSV or Excel for further analysis outside of the online application. Downloading Data: This portion of the guide will explain how to download the traffic count data. It will explain what file types are available for download, and any restrictions that are placed on the data.
(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a MD iMAP hosted service layer. Find more information at http://imap.maryland.gov. These data map hub and corridor elements within the green infrastructure. The Green Infrastructure Assessment was developed to provide decision support for Maryland's Department of Natural Resources land conservation programs. Methods used to identify and rank green infrastructure lands are intended soley for this use. Other applications are at the discretion of the user. The Maryland Department of Natural Resources is not responsible for any inaccuracies in the data and does not necessarily endorse any uses or products derived from the data other than those for which the data were originally intended. Maryland's green infrastructure is a network of undeveloped lands that provide the bulk of the state's natural support system. Ecosystem services - such as cleaning the air - filtering water - storing and cycling nutrients - conserving soils - regulating climate - and maintaining hydrologic function - are all provided by the existing expanses of forests - wetlands - and other natural lands. These ecologically valuable lands also provide marketable goods and services - like forest products - fish and wildlife - and recreation. The Green Infrastructure serves as vital habitat for wild species and contributes in many ways to the health and quality of life for Maryland residents. To identify and prioritize Maryland's green infrastructure - we developed a tool called the Green Infrastructure Assessment (GIA). The GIA was based on principles of landscape ecology and conservation biology - and provides a consistent approach to evaluating land conservation and restoration efforts in Maryland. It specifically attempts to recognize: a variety of natural resource values (as opposed to a single species of wildlife - for example) - how a given place fits into a larger system - the ecological importance of natural open space in rural and developed areas - the importance of coordinating local - state and even interstate planning - and the need for a regional or landscape-level view for wildlife conservation. The GIA identified two types of important resource lands - hubs"" and ""corridors."" Hubs typically large contiguous areas - separated by major roads and/or human land uses - that contain one or more of the following: Large blocks of contiguous interior forest (containing at least 250 acres - plus a transition zone of 300 feet) Large wetland complexes - with at least 250 acres of unmodified wetlands; Important animal and plant habitats of at least 100 acres - including rare - threatened - and endangered species locations - unique ecological communities - and migratory bird habitats; relatively pristine stream and river segments (which - when considered with adjacent forests and wetlands - are at least 100 acres) that support trout - mussels - and other sensitive aquatic organisms; and existing protected natural resource lands which contain one or more of the above (for example - state parks and forests - National Wildlife Refuges - locally owned reservoir properties - major stream valley parks - and Nature Conservancy preserves). In the GIA model - the above features were identified from Geographic Information Systems (GIS) spatial data that covered the entire state. Developed areas and major roads were excluded - areas less than 100 contiguous acres were dropped - adjacent forest and wetland were added to the remaining hubs - and the edges were smoothed. The average size of all hubs in the state is approximately 2200 acres. Corridors are linear features connecting hubs together to help animals and plant propagules to move between hubs. Corridors were identified using many sets of data - including land cover - roads - streams - slope - flood plains - aquatic resource data - and fish blockages. Generally speaking - corridors connect hubs of similar type (hubs containing forests are connected to one another; while those consisting primarily of wetlands are connected to others containing wetlands). Corridors generally follow the best ecological or ""most natural"" routes between hubs. Typically these are streams with wide riparian buffers and healthy fish communities. Other good wildlife corridors include ridge lines or forested valleys. Developed areas - major roads - and other unsuitable features were avoided. Please to the Green Infrastructure web site (http://www.dnr.state.md.us/greenways/gi/gi.html) for additional information. Last Updated: Feature Service Layer Link: https://mdgeodata.md.gov/imap/rest/services/Biota/MD_GreenInfrastructure/MapServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively the ""Data"") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
DescriptionThe features in this layer have been created from information extracted from SAP. When an SAP user is mapping a project from the CJ20N transaction, these GIS representations are created.Used by SAP GIS Locator web app to read/write projects GIS data from SAP PRD environment. From 9/19/2016 onward.Last UpdateContinuouslyUpdate FrequencyContinuouslyData OwnerDivision of Transportation DevelopmentData ContactGIS Support UnitCollection MethodProjectionNAD83 / UTM zone 13NCoverage AreaStatewideTemporalDisclaimer/LimitationsThere are no restrictions and legal prerequisites for using the data set. The State of Colorado assumes no liability relating to the completeness, correctness, or fitness for use of this data.
In the United States, the federal government manages approximately 28% of the land in the United States. Most federal lands are west of the Mississippi River, where almost half of the land by area is managed by the federal government. Federal lands include 193 million acres managed by the US Forest Service in 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service, and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources. The agencies included in this layer are:Bureau of Land ManagementDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States federal lands managed by six federal agenciesGeographic Extent: 50 United States and the District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DOD, USFS, USFWS, NPS, PADUS 3.0Publication Date: Various - Esri compiled and published this layer in May 2025. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Jurassic-Cretaceous Cotton Valley Group was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration on the top of the Cotton Valley Group in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the kelly bushing elevation or the ground surface elevation) and the reported depth of the Cotton Valley Group. This map service also shows the thickness of the interval from the top of the Cotton Valley Group to the top of the Smackover Formation.
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
The US Forest Service manages 193 million acres including the nation's 154 National Forests and 20 National Grasslands. These lands provide a wide variety of recreational opportunities, protect sources of clean water, and supply timber and forage.Dataset SummaryPhenomenon Mapped: United States lands managed by the US Forest Service Coordinate System: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, and Puerto RicoVisible Scale: The data is visible at all scales.Source: USFS Surface Ownership Parcels layerPublication Date: May 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Forest Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "forest service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "forest service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in ProThe data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage..This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.In the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the two highest levels of protection GAP Status 1 and 2. These two classes are commonly referred to as protected areas.Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity (GAP Status 1 and 2)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 1, areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management, and GAP Status 2, areas managed for biodiversity where natural disturbance is suppressed. The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Vegetation classification in the Lower Kuskokwim area utilizes Spot 2015 and ESRI basemap imagery and has been interpreted by the State of Alaska, Department of Natural Resources, Division of Forestry, Northern Region. Vegetation layer includes attributes for volume calculations of timbered polygons. Sample plot layer includes individual sample tree attributes. Sample stand layer includes volume calculations for sample stands. Selected stands were sampled for volume in 2004.
One-eighth of the United States (247.3 million acres) is managed by the Bureau of Land Management. As part of the Department of the Interior, the agency oversees the 30 million acre National Landscape Conservation System, a collection of lands that includes 221 wilderness areas, 23 national monuments and 636 other protected areas. Bureau of Land Management Lands contain over 63,000 oil and gas wells and provide forage for over 18,000 grazing permit holders on 155 million acres of land. Dataset SummaryPhenomenon Mapped: United States lands managed by the Bureau of Land ManagementGeographic Extent: Contiguous United States and AlaskaData Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales larger than 1:2,000,000.Source: BLM Surface Management Agency layer, Rasterized by Esri from features May 2025.Publication Date: December 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Bureau of Land Management lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "bureau of land management" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "bureau of land management" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes:
Percent of neighborhood over 8% of slope
Slope Classes
0 - 20%
400
21% -50%
300
51% - 80%
200
81%
100
Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:
Change in elevation
Relief Class ID
0 – 30 meters
10
31 meter – 90 meters
20
91 meter – 150 meters
30
151 meter – 300 meters
40
301 meter – 900 meters
50
900 meters
60
The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:
Percent of neighborhood over 8% slope in upland or lowland areas
Profile Class
Less than 50% gentle slope is in upland or lowland
0
More than 75% of gentle slope is in lowland
1
50%-75% of gentle slope is in lowland
2
50-75% of gentle slope is in upland
3
More than 75% of gentle slope is in upland
4
Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
This dashboard defaults to a presentation of the crash points that will cluster the crash types and determine a predominant crash type. In the case two crash types have the same number of crashes for that type the predominant type will not be colored to either of the crash types. Clicking on the clusters will include a basic analysis of the cluster. These clusters are dynamic and will change as the user zooms in an out of the map. The clustering of crashes is functionality availalble in ArcGIS Online and the popups for the clusters is based on items that include elements configured with the Arcade language. Users interested in learning more about point clustering and the configuration of popups should read through some of the examples of the following ESRI Article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/) . The dashboard itself does include a map widget that does allow the user to toggle the visibility of layers and/or click on the crashes within the map. The popups for single crashes can be difficult to see unless the map is expanded (click in upper right of map widget). There is a Review Crashes tab that allows for another display of details of a crash that may be easier for users.This dashboard includes selectors in both the header and sidebar. By default the sidebar is collapsed and would need to be expanded. The crash dataset used in the presentation includes columns with a prefix of the unit. The persons information associated to each unit would be based on the Person that was considered the driver. Crash data can be filtered by clicking on items in chart widgets. All chart widgets have been configured to allow multiple selections and these selections will then filter the crash data accordingly. Allowing for data to be filtered by clicking on widgets is an alternative approach to setting up individual selectors. Selectors can take up a lot of space in the header and sidebar and clicking on the widget items can allow you to explore different scenarios which may ultimately be setup as selectors in the future. The Dashboard has many widgets that are stacked atop each other and underneath these stacked widgets are controls or tabs that allow the user to toggle between different visualizations. The downside to allowing a user to filter based on the output of a widget is the need for the end user to keep track of what has been clicked and the need to go back through and unclick.Many of the Crash Data Elements are based on lookups that have a fairly large range of values to select. This can be difficult sometimes with charts and the fact that a user may be overwhelmed by the number of items be plotted. Some of these values could potentially benefit by grouping similar values. The crash data being used in this dashboard hasn't been post processed to simplify some of the groupings of data and represent the value as it would appear in the Crash System. This dashboard was put together to continue the discussion on what data elements should be included in the GIS Crash Dataset. At the moment there is currently one primary dataset that is used to present crash data in Map Services. There is lots of potential to extend this dataset to include additional elements or it might be beneficial to create different versions of the crash data. Having an examples like this one will hopefully help with the discussion. Workable examples of what works and doesn't work. There are lots of data elements in the Crash System that could allow for an even more detailed safety analysis. Some of the unit items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash.Most Damaged AreaExtent of DamageUnit TypeDirection of Travel (Northbound, Southbound, Eastbound, Westbound)Pre-Crash ActionsSequence of Events 1-4Most Harmful Event Some of the persons items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash and the person would be based on the driver.Condition at Time of CrashDriver Action 1Driver Action 2Driver DistractedAgeSexPerson Type (Driver/Owner(6), Driver(1))In addition to the Units and Persons information included above each crash includes the standard crash data elements which includesDate, Time, Day of Week, Year, Month, HourInjury Level (K,A,B,C,PD)Type of CrashTownname, County, MDOT RegionWeather ConditionsLight ConditionsRoad Surface ConditionsRoad GradeSchool Bus RelatedTraffic Control DeviceType of LocationWork Zone ItemsLocation Type (NODE, ELEMENT) used for LRS# of K, # of A, # of B, # of C, # of PD InjuriesTotal # of UnitsTotal # of PersonsFactored AADT (Only currently applicable for crashes along the roadway (ELEMENT)).Location of First Harmful EventTotal Injury Count for the CrashBoolean Y/N if Pedestrian or Bicycles are InvolvedContributing EnvironmentsContributing RoadRoute Number, Milepoint, Element ID, Node ID
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable nitrogen (nitrogen).Nitrogen is an essential nutrient for sustaining life on Earth. Nitrogen is a core component of amino acids, which are the building blocks of proteins, and of nucleic acids, which are the building blocks of genetic material (RNA and DNA).This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for nitrogen are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Total nitrogen (N) in g/kgCell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for nitrogen were used to create this layer. You may access nitrogen values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Laatste update: 10 februari 2025Terug naar Esri Nederland Support HubNa het aanvragen van een ArcGIS Online-abonnement ontvangt de bij Esri Nederland geregistreerde contactpersoon van jullie organisatie een e-mail met een activeringslink. Mocht bij jullie niet bekend zijn wie deze persoon is, dan kan contact opgenomen worden met Esri Nederland (+31 10 217 0700 of administratie@esri.nl). Klanten met een ArcGIS Pro-licentie in onderhoud krijgen hier standaard een ArcGIS Online-abonnement bij. Het is mogelijk extra ArcGIS Online-gebruikers (User Types) of credits aan te schaffen. Deze worden dan toegevoegd aan het bestaande ArcGIS Online-abonnement, tenzij er andere afspraken zijn gemaakt.
This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the conterminous United States. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery. By policy, the Service also excludes certain types of "farmed wetlands" as may be defined by the Food Security Act or that do not coincide with the Cowardin et al. definition. Contact the Service's Regional Wetland Coordinator for additional information on what types of farmed wetlands are included on wetland maps. The data and related materials are made available through Esri (http://www.esri.com) and are intended for educational purposes only (see Access and use limitations section).
This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.
If you have ever had an error message pop up in ArcGIS Online that mentions you have exceeded the user types in your account, watch this video to see how to resolve this issue.This video takes you through the steps of how to do change students and teachers user types on the rare occasion that you are required to change user types in your schools ArcGIS Online account.ArcGIS Online Administration.Video recorded - April 2020.