Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This tutorial introduces you to using Python code in a Jupyter Notebook, an open source web application that enables you to create and share documents that contain rich text, equations and multimedia, alongside executable code and visualization of analysis outputs. The tutorial begins by stepping through the basics of setting up and being productive with Python notebooks. You will be introduced to ArcGIS Notebooks, which are Python Notebooks that are well-integrated within the ArcGIS platform. Finally, you will be guided through a series of ArcGIS Notebooks that illustrate how to create compelling notebooks for data science that integrate your own Python scripts using the ArcGIS API for Python and ArcPy in combination with thousands of open source Python libraries to enhance your analysis and visualization.To download the dataset Labs, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/arcgis-notebooks-tutorial.git.Software & Solutions Used: Required: This tutorial was last tested on August 27th, 2024, using ArcGIS Pro 3.3. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.Recommended: ArcGIS Online subscription account with permissions to use advanced Notebooks and GeoEnrichmentOptional: Notebook Server for ArcGIS Enterprise 11.3+Time to Complete: 2 h (excludes processing time)File Size: 196 MBDate Created: January 2022Last Updated: August 27, 2024
Facebook
TwitterCreated by Johanna Kraus September 2012. Historic and Neighborhood Preservation areas just copied from ZONE_COT layer. UOD-1 from area_zonePurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactJohanna.Kraus@tucsonaz.govUpdate FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterLocation of underground storm drains in the City of Tucson. The data provided here was pulled from drawings and plans submitted to the Tucson Department of Transportation.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterLocation of man holes in the City of Tucson. Data in this layer is pulled from plans and drawings submitted to the Tucson Department of Transportation.PurposeLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Dataset ClassificationLevel 0 - OpenKnown UsesThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterBoundaries of subdivisions in Pima County.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterStormwater models consist of a set of nodes that are combined to simulate the behavior of the entire system. Each node represents a hydrograph operation, such as generating runoff from a subcatchment or routing the hydrograph through a reach or pond. The individual nodes are interconnected, specifying how the hydrographs are routed from one node to another.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyNot updated since 2009
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset includes approximate flood-hazard boundary areas prepared by both detailed and approximate methods. Study limits were defined using the highlighted drainage-problem areas shown on the city's zoning base maps as a guide. Floodplain studies completed and sealed in 2007 and 2008 . Shape files created April 2011. Shape files exported from Autodesk Map 3D 2006 and projected using ArcMap 10.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyMaintenance and frequency to be determined by City of Tucson, Planning and Development Services.
Facebook
TwitterLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Lorem ipsum dolor sit amet consectetur adipiscing elit. Massa enim nec dui nunc. Quis commodo odio aenean sed adipiscing diam donec adipiscing. Nulla pellentesque dignissim enim sit amet venenatis urna. Sit amet volutpat consequat mauris nunc congue nisi vitae. Fames ac turpis egestas maecenas pharetra convallis posuere morbi leo. Morbi tristique senectus et netus et malesuada fames ac turpis. Eget lorem dolor sed viverra ipsum nunc. Id ornare arcu odio ut sem. Morbi leo urna molestie at elementum eu. In metus vulputate eu scelerisque. Lobortis mattis aliquam faucibus purus in massa tempor nec feugiat. Ut sem viverra aliquet eget sit amet tellus cras adipiscing. Lobortis mattis aliquam faucibus purus in massa tempor. Donec massa sapien faucibus et molestie ac feugiat. Et odio pellentesque diam volutpat commodo sed egestas egestas. Pharetra magna ac placerat vestibulum lectus. Fermentum leo vel orci porta non pulvinar neque laoreet suspendisse.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactJohn ZukasDepartment of Transportation and Mobility520-837-6762john.zukas@tucsonaz.govUpdate FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterThe dataset includes approximate flood-hazard boundary areas prepared by both detailed and approximate methods. Study limits were defined using the highlighted drainage-problem areas shown on the city's zoning base maps as a guide. Floodplain studies completed and sealed in 2007 and 2008 . Shape files created April 2011. Shape files exported from Autodesk Map 3D 2006 and projected using ArcMap 10.Maintenance and frequency to be determined by City of Tucson, Planning and Development ServicesUsage: This layer is intended to be used in the City of Tucson's Open Data portal and not for regular use in ArcGIS Online, ArcGIS Enterprise or other web applications.Link to Open Data item: https://gisdata.tucsonaz.gov/datasets/channel-center-lines-open-data
Facebook
TwitterRoads that are a part of the Major Streets and Routes layer designated as scenic.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterDetroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.
Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.
Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.
LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.
Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3
Facebook
TwitterArcGIS Dashboard allows users to present maps and data in an interactive, dynamic, and intuitive way. It is integrated within the ArcGIS system, so you are ready to use maps and data from your organisation's ArcGIS online or Enterprise.
Facebook
TwitterThis deep learning model is used to detect trees in low-resolution drone or aerial imagery. Tree detection can be used for applications such as vegetation management, forestry, urban planning, etc. High resolution aerial and drone imagery can be used for tree detection due to its high spatio-temporal coverage.
This deep learning model is based on MaskRCNN and has been trained on data from the DM Dataset preprocessed and collected by the IST Team.
There is no need of high-resolution imagery you can perform all your analysis on low resolution imagery by detecting the trees with the accuracy of 75% and finetune the model to increase your performance and train on your own data.
Licensing requirements ArcGIS Desktop – ArcGIS Image Analyst and ArcGIS 3D Analyst extensions for ArcGIS Pro ArcGIS Enterprise – ArcGIS Image Server with raster analytics configured ArcGIS Online – ArcGIS Image for ArcGIS Online
Using the model Follow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.
Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.
Input 3-band low-resolution (70 cm) satellite imagery.
Output Feature class containing detected trees
Applicable geographies The model is expected to work well in the U.A.E.
Model architecture This model is based upon the MaskRCNN python package and uses the Resnet-152 model architecture implemented in pytorch.
Training data This model has been trained on the Satellite Imagery created and Labelled by the team and validated on the different locations with more diverse locations.
Accuracy metrics This model has an average precision score of 0.45.
Sample results Here are a few results from the model.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mayor's Order 2017-115 establishes a comprehensive data policy for the District government. The data created and managed by the District government are valuable assets and are independent of the information systems in which the data reside. As such, the District government shall: maintain an inventory of its enterprise datasets; classify enterprise datasets by level of sensitivity; regularly publish the inventory, including the classifications, as an open dataset; and strategically plan and manage its investment in data.The greatest value from the District’s investment in data can only be realized when enterprise datasets are freely shared among District agencies, with federal and regional governments, and with the public to the fullest extent consistent with safety, privacy, and security.For more information, please visit https://opendata.dc.gov/pages/edi-overview. Previous years of EDI can be found on Open Data.
Facebook
TwitterGrates is a layer that shows the location of drainage grates found in the streets maintained by the City of Tucson. They are designed to remove excess rainfall from the roads during heavy rainfall. The data found here is pulled from plans and drawings submitted to the Tucson Department of Transportation.PurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A copy of located in editsde for backup purposes. The dataset includes approximate flood-hazard boundary areas prepared by both detailed and approximate methods. Study limits were defined using the highlighted drainage-problem areas shown on the city's zoning base maps as a guide. Floodplain studies completed and sealed in 2007 and 2008 . Shape files created April 2011. Shape files exported from Autodesk Map 3D 2006 and projected using ArcMap 10. Maintenance and frequency to be determined by City of Tucson, Planning and Development ServicesReplace feature class "dsdFHZStudy2007CrossSections" See feature class "cotFloodHazardsPurposeLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Dataset ClassificationLevel 0 - OpenKnown UsesThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Facebook
TwitterCatch basins along roadways in the City of Tucson. Data is pulled from plans and drawings as they are submitted to the Tucson Department of Transportation.Usage: This layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Link to Open Data item: https://gisdata.tucsonaz.gov/datasets/catch-basins-open-data
Facebook
TwitterCombination of 2 layers which were all made by Frank Sousa (WASHERZ which showed the existing alignments that are both WASH and ERZ became unnecessary)WASH_ORD shows the existing WASH alignmentsWASH_ERZ shows the existing ERZ alignments Dan Bursuck combined data in May 2015 and added fields: wash_type, status and visible (segments outside of City Limits don't show - visible=no - but are retained because they are part of Frank's original dataPurposeThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyNot Maintained
Facebook
TwitterStatus: Completed 12/31/2012Contact: John Zukas, TDOT, 520-837-5883, john.zukas@tucsonaz.govKnown Errors and Qualifications: None.Supplemental Information: This layer is used by the ADA Paratransit Eligibility Office to determine a "primary" or "secondary" transit provider for those deemed ADA paratransit eligible. Lineage: None.Usage: This layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Link to Open Data item: https://gisdata.tucsonaz.gov/datasets/rta-special-needs-area-open-data
Facebook
TwitterThis Reclamation Science & Technology Program research project sought to modernize field data collection and advance data management via a centralized online database. The research evaluated standardized mobile application data collection and online data storage for several condition assessments—coatings, cathodic protection, hazardous materials, and mechanical—so that robust and accessible inventories can be built. The team successfully developed, tested, and implemented a GIS inspection tool. The new Materials and Corrosion Asset Inspection tool streamlines field data collection via mobile device and improves standardization for several inspection types performed across Reclamation. Overall, the Materials and Corrosion Asset Inspection tool provides as a proof-of-concept, promoting a user-friendly geospatial method of data collection, storage, and interaction. The online data management tool’s report feature exports records into an editable format to aid report development. Further, the online database can be incorporated into future anticipated enterprise systems.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This tutorial introduces you to using Python code in a Jupyter Notebook, an open source web application that enables you to create and share documents that contain rich text, equations and multimedia, alongside executable code and visualization of analysis outputs. The tutorial begins by stepping through the basics of setting up and being productive with Python notebooks. You will be introduced to ArcGIS Notebooks, which are Python Notebooks that are well-integrated within the ArcGIS platform. Finally, you will be guided through a series of ArcGIS Notebooks that illustrate how to create compelling notebooks for data science that integrate your own Python scripts using the ArcGIS API for Python and ArcPy in combination with thousands of open source Python libraries to enhance your analysis and visualization.To download the dataset Labs, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/arcgis-notebooks-tutorial.git.Software & Solutions Used: Required: This tutorial was last tested on August 27th, 2024, using ArcGIS Pro 3.3. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.Recommended: ArcGIS Online subscription account with permissions to use advanced Notebooks and GeoEnrichmentOptional: Notebook Server for ArcGIS Enterprise 11.3+Time to Complete: 2 h (excludes processing time)File Size: 196 MBDate Created: January 2022Last Updated: August 27, 2024