34 datasets found
  1. a

    Configure Pop-Ups

    • edu.hub.arcgis.com
    Updated Jul 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2020). Configure Pop-Ups [Dataset]. https://edu.hub.arcgis.com/documents/9d5b845b136e41f8945843246c482772
    Explore at:
    Dataset updated
    Jul 21, 2020
    Dataset authored and provided by
    Education and Research
    Description

    Pop-ups allow you to highlight attribute information in a web map. In this tutorial, you will learn how to create a web map and configure pop-ups in ArcGIS Online.

  2. USGS Historical Topographic Map Explorer

    • data.amerigeoss.org
    • amerigeo.org
    • +2more
    Updated Oct 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USGS Historical Topographic Map Explorer [Dataset]. https://data.amerigeoss.org/dataset/usgs-historical-topographic-map-explorer1
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Description

    The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:

    • Find a location of interest.
    • View the maps.
    • Compare the maps.
    • Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location.
    • Save the maps in an ArcGIS Online web map.

    Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.


    Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.

    Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.

    We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.

  3. GeoForm (Deprecated)

    • data-salemva.opendata.arcgis.com
    • noveladata.com
    Updated Jul 2, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2014). GeoForm (Deprecated) [Dataset]. https://data-salemva.opendata.arcgis.com/items/931653256fd24301a84fc77955914a82
    Explore at:
    Dataset updated
    Jul 2, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  4. Crowdsource Manager (Deprecated)

    • sustainable-development-goals-geoxpert.hub.arcgis.com
    • analytics.ag-intel.ca
    Updated Mar 3, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2015). Crowdsource Manager (Deprecated) [Dataset]. https://sustainable-development-goals-geoxpert.hub.arcgis.com/items/43a4a0dbf9914f93bf0657f7839fa655
    Explore at:
    Dataset updated
    Mar 3, 2015
    Dataset provided by
    Environmental Systems Research Institutehttp://esri.com/
    Authors
    esri_en
    Description

    Crowdsource Manager is a configurable group app template that can be used for triaging crowd sourced data across multiple layers and maps as it is collected using applications such as Crowdsource Reporter or Collector. Using Crowdsource Manager, these reports can be reviewed and attributes such as assignment and status can be updated. Attachments and comments associated with each report are also accessible.Use CasesCrowdsource Manager can be configured for reviewing any crowd sourced information, including data collected through Crowdsource Reporter configurations such as these:citizen service requestshealth and safety reportscitizen science reportsdrone imagery reviewreviewing real estate property listingsConfigurable OptionsConfigure Crowdsource Manager to present a group of maps with editable layers, and personalize the app by modifying the following options: Display a custom title and logo in the application headerChoose a color schemeUse the map pop-up settings to specify which fields should be visible and which should be editableSupported DevicesThis application is responsively designed to support use in browsers on desktops and tablets..Data RequirementsCrowdsource Manager requires an ArcGIS Online group that contains at least one map with at least one editable feature layer.This web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Manager documentation.

  5. U

    Heat Severity - USA 2020

    • data.unep.org
    Updated Dec 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN World Environment Situation Room (2022). Heat Severity - USA 2020 [Dataset]. https://data.unep.org/app/dataset/wesr-arcgis-wm-heat-severity---usa-2020
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    UN World Environment Situation Room
    Area covered
    United States
    Description

    This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2019 and 2020.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.Terms of UseYou understand and agree, and will advise any third party to whom you give any or all of the data, that The Trust for Public Land is neither responsible nor liable for any viruses or other contamination of your system arising from use of The Trust for Public Land’s data nor for any delays, inaccuracies, errors or omissions arising out of the use of the data. The Trust for Public Land’s data is distributed and transmitted "as is" without warranties of any kind, either express or implied, including without limitation, warranties of title or implied warranties of merchantability or fitness for a particular purpose. The Trust for Public Land is not responsible for any claim of loss of profit or any special, direct, indirect, incidental, consequential, and/or punitive damages that may arise from the use of the data. If you or any person to whom you make the data available are downloading or using the data for any visual output, attribution for same will be given in the following format: "This [document, map, diagram, report, etc.] was produced using data, in whole or in part, provided by The Trust for Public Land."

  6. a

    Full Range Heat Anomalies - USA 2020

    • hrtc-oc-cerf.hub.arcgis.com
    Updated Mar 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Full Range Heat Anomalies - USA 2020 [Dataset]. https://hrtc-oc-cerf.hub.arcgis.com/datasets/TPL::full-range-heat-anomalies-usa-2020
    Explore at:
    Dataset updated
    Mar 4, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2019 and 2020.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  7. h

    Heat Severity - USA 2021

    • heat.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3
    Explore at:
    Dataset updated
    Jan 6, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  8. c

    Caribbean Ecophysiographic Land Units

    • caribbeangeoportal.com
    • data.amerigeoss.org
    • +1more
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Ecophysiographic Land Units [Dataset]. https://www.caribbeangeoportal.com/maps/caribbean-ecophysiographic-land-units/explore?location=11.504149%2C-71.938600%2C2.57
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features the World Ecophysiographic Land Units 2015 layer, focused on the Caribbean. Ecological Land Units are areas of distinct bioclimate, landform, lithology, and land cover that form the basic components of terrestrial ecosystem structure. Click on the map to learn more about these components for a given location.Ecological Land Units (ELUs) are areas of distinct bioclimate, landform, lithology, and land cover that form the basic components of terrestrial ecosystem structure. The ELU layer was produced by combining the values in four 250-m cell-sized rasters using the ArcGIS Combine tool (Spatial Analyst). In 2015 these four components resulted in 3,639 different combinations or ELUs, which is 284 fewer than 2014 which used older land cover and a different landform methodology.Note: This layer is designed for use as a geoprocessing input layer and to support pop-ups in ArcGIS Online. Because of the large number of unique values in the image service, the legend cannot be used in a meaningful way. Use the World Ecological Land Units Map 2015 tiled map layer for mapping and visualization. These four component datasets represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. Values for each of the four input layers are listed in the table below. BioclimateLandformsLithologyLand CoverArcticPlainsUndefinedBare AreaCold DryHillsUnconsolidated SedimentSparse VegetationCold Semi-DryMountainsCarbonate Sedimentary RockGrassland, Shrub, or ScrubCold Moist Mixed Sedimentary RockMostly CroplandCold Wet Non-Carbonate Sedimentary RockMostly Needleleaf/Evergreen ForestCool Dry EvaporiteMostly Deciduous ForestCool Semi-Dry PyroclasticsSwampy or Often FloodedCool Moist Metamorphic RockArtificial or Urban AreaCool Wet Acidic VolcanicsSurface WaterHot Dry Acidic PlutonicsUndefinedHot Semi-Dry Non-Acidic Volcanics Hot Moist Non-Acidic Plutonics Hot Wet Warm Dry Warm Semi-Dry Warm Moist Warm Wet Dataset SummaryThis layer is suitable for analysis and can be used in ArcGIS Online to support pop-ups. It can be used in ArcGIS Desktop. Because of the large number of unique values in the image service it cannot be symbolized and displays as an all black layer. To use in pop-ups set the transparency to 100% and configure the pop-up. The pop-up from this layer can be combined with the World Ecological Land Units Map.Layers providing access to the four input layers used to create this map see the following links:World BioclimatesWorld Landforms Improved Hammond MethodWorld LithologyWorld Land Cover ESA 2010The ecophysiographic facets layer is available here and a layer summarizing the local diversity of the ecophysiographic facets is available here. A service is available to the data tables associated with this and other global layers. These data table services can be used by developers to create custom applications. For more information see the World Ecophysiographic Tables.The layer was created by the USGS and Esri in 2015.For more information see the publication:Sayre and others. 2014. A New Map of Global Ecological Land Units — An Ecophysiographic Stratification Approach. Washington, DC: Association of American Geographers. 46 pages. Available onlineWhat can you do with this layer?This layer is suitable for analysis and can be used in ArcGIS Online to support pop-ups. It can be used in ArcGIS Desktop. Because of the large number of unique values in the image service it can not be symbolized and displays as an all white layer. To use in pop-ups set the transparency to 100% and configure the pop-up.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  9. a

    Early IMERG Precipitation Rate (GPM 3IMERGHHE PrecipitationCal) Web Map

    • keep-cool-global-community.hub.arcgis.com
    • climat.esri.ca
    • +2more
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2021). Early IMERG Precipitation Rate (GPM 3IMERGHHE PrecipitationCal) Web Map [Dataset]. https://keep-cool-global-community.hub.arcgis.com/maps/06f128b03bcc44d0b7376b213697946d
    Explore at:
    Dataset updated
    Dec 2, 2021
    Dataset authored and provided by
    NASA ArcGIS Online
    Area covered
    Description

    GPM_3IMERGHHE Early Precipitation Rate L3 V07 (GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHE 07)) is an image service derived from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) Early dataset. The image service shows precipitation rate (mm/hr), approximately four hours after observation. The image service provides global coverage with a temporal span from 06/01/2000 0:00 UTC to present at 30-minute intervals. The service is updated every three hours to incorporate the new granules. To access the REST endpoint for the service, input the URL into a browser or select View just above the URL.IMERG is an algorithm that estimates precipitation rate from multiple passive microwave sensors in the GPM constellation, the GPM Dual-Frequency Radar, and infrared (IR) sensors mounted on geostationary satellites. Currently, the near-real-time Early Run estimates have no concluding calibration. Briefly describing the Early Run, the input precipitation estimates computed from the various satellite passive microwave sensors are intercalibrated to the Combined Radar-Radiometer Algorithm (CORRA) product (because it is presumed to be the best snapshot Tropical Rainfall Measuring Mission (TRMM)/GPM estimate after adjustment to the monthly Global Precipitation Climatology Project Satellite-Gauge (GPCP SG)), then "forward morphed" and combined with microwave precipitation-calibrated geo-IR fields to provide half-hourly precipitation estimates on a 0.1°x0.1° (roughly 10x10 km) grid over the globe. Precipitation phase is computed using analyses of surface temperature, humidity, and pressure. Dataset at a glance Shortname: GPM_3IMERGHHEDOI: 10.5067/GPM/IMERG/3B-HH-E/07Version: 07Coverage: -180.0,-90.0,180.0,90.0Temporal Coverage: 2000-06-01 to PresentData ResolutionSpatial: 0.1 ° x 0.1 °Temporal: 30 minutes SymbologyThe default symbology in the Map Viewer may be changed to accommodate other color schemes using the settings in the Image Display panel from the layer settings menu. NoData values, and values less than 0.03 mm/hr (the current threshold value for the IMERG algorithm) have been removed. Ensure that pop-ups are enabled to view pixel values (select Modify Map first). Temporal CoverageThe source dataset is in UTC time but the service is displayed in the Map Viewer in local time. The data is available in 30-minute intervals, and the map visualization may be modified by opening the Time Slider Settings menu from the icon on the time slider bar. The total temporal coverage may be limited to the desired range and the time interval may also be changed. The options in the time interval units are based on the total time range input, so a shorter time range will enable shorter time units to be selected from the time interval drop-down menu. If the time settings are set to more than 30-minute intervals, the first time slice in the time interval is visible. Portal Options Select Modify Map to customize the layer visualization. More information about the image service capabilities may be found in the REST endpoint. In the portal, the basemap may be changed by selecting the desired option from the Basemap menu. Further instructions on using the image service may be found at [GES DISC How-To's: How to access the GES DISC IMERG ArcGIS Image Service using the ArcGIS Enterprise Map Viewer (nasa.gov)].

  10. a

    Caribou Crashes

    • maine.hub.arcgis.com
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2024). Caribou Crashes [Dataset]. https://maine.hub.arcgis.com/datasets/7fd04f27cbda46b8ae7afdbf3715ef40
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  11. a

    StillwaterAve Crash

    • maine.hub.arcgis.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2024). StillwaterAve Crash [Dataset]. https://maine.hub.arcgis.com/datasets/209b2dea4c6e470bb08ce828cf8d397b
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  12. a

    Minot Ave All Crashes 2012 2023 May

    • maine.hub.arcgis.com
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). Minot Ave All Crashes 2012 2023 May [Dataset]. https://maine.hub.arcgis.com/maps/maine::minot-ave-all-crashes-2012-2023-may
    Explore at:
    Dataset updated
    May 11, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This dataset represents crashes on the full extent of Minot Ave between 2012 and May 2023. The Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggreagation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  13. a

    SR 1 York Crash

    • maine.hub.arcgis.com
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). SR 1 York Crash [Dataset]. https://maine.hub.arcgis.com/maps/maine::sr-1-york-crash
    Explore at:
    Dataset updated
    Aug 4, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  14. a

    Crashes US1A Features

    • maine.hub.arcgis.com
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). Crashes US1A Features [Dataset]. https://maine.hub.arcgis.com/maps/maine::crashes-us1a-features
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until the end of May that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  15. a

    SR 202X Gray to Auburn Crashes

    • maine.hub.arcgis.com
    Updated Jan 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2024). SR 202X Gray to Auburn Crashes [Dataset]. https://maine.hub.arcgis.com/maps/maine::sr-202x-gray-to-auburn-crashes
    Explore at:
    Dataset updated
    Jan 22, 2024
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  16. a

    SR 1A Brewer to Ellsworth Crashes

    • maine.hub.arcgis.com
    Updated Jan 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2024). SR 1A Brewer to Ellsworth Crashes [Dataset]. https://maine.hub.arcgis.com/maps/maine::sr-1a-brewer-to-ellsworth-crashes
    Explore at:
    Dataset updated
    Jan 22, 2024
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  17. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • giscommons-countyplanning.opendata.arcgis.com
    • +1more
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  18. a

    SR 11 Sherman to Fort Kent Crashes

    • maine.hub.arcgis.com
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). SR 11 Sherman to Fort Kent Crashes [Dataset]. https://maine.hub.arcgis.com/maps/maine::sr-11-sherman-to-fort-kent-crashes
    Explore at:
    Dataset updated
    Dec 4, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  19. a

    State Route 4 Crashes 2012-2023 Auburn to Livermore

    • maine.hub.arcgis.com
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). State Route 4 Crashes 2012-2023 Auburn to Livermore [Dataset]. https://maine.hub.arcgis.com/maps/maine::state-route-4-crashes-2012-2023-auburn-to-livermore
    Explore at:
    Dataset updated
    Jun 5, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset was generated in June 2023 and includes those crashes along State Route 4 up until that point. The dataset was uploaded to ArcGIS Online to allow for further review of potential changes to the GIS Crash Dataset(s). The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

  20. a

    SR 3 Trenton Crashes

    • maine.hub.arcgis.com
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). SR 3 Trenton Crashes [Dataset]. https://maine.hub.arcgis.com/maps/maine::sr-3-trenton-crashes
    Explore at:
    Dataset updated
    Aug 24, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Education and Research (2020). Configure Pop-Ups [Dataset]. https://edu.hub.arcgis.com/documents/9d5b845b136e41f8945843246c482772

Configure Pop-Ups

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 21, 2020
Dataset authored and provided by
Education and Research
Description

Pop-ups allow you to highlight attribute information in a web map. In this tutorial, you will learn how to create a web map and configure pop-ups in ArcGIS Online.

Search
Clear search
Close search
Google apps
Main menu