Facebook
TwitterThe Digital Geologic-GIS Map of Alibates Flint Quarries National Monument and Lake Meredith National Recreational Area and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (aflm_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (aflm_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (alfl_lamr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (aflm_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (aflm_geology_metadata_faq.pdf). Please read the alfl_lamr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Water Development Board and Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (aflm_geology_metadata.txt or aflm_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterPurpose:This feature layer describes water quality sampling data performed at several operating coal mines in the South Fork of Cherry watershed, West Virginia.Source & Data:Data was downloaded from WV Department of Environmental Protection's ApplicationXtender online database and EPA's ECHO online database between January and April, 2023.There are five data sets here: Surface Water Monitoring Sites, which contains basic information about monitoring sites (name, lat/long, etc.) and NPDES Outlet Monitoring Sites, which contains similar information about outfall discharges surrounding the active mines. Biological Assessment Stations (BAS) contain similar information for pre-project biological sampling. NOV Summary contains locations of Notices of Violation received by South Fork Coal Company from WV Department of Environmental Protection. The Quarterly Monitoring Reports table contains the sampling data for the Surface Water Monitoring Sites, which actually goes as far back as 2018 for some mines. Parameters of concern include iron, aluminum and selenium, among others.A relationship class between Surface Water Monitoring Sites and the Quarterly Monitoring Reports allows access to individual sample results.Processing:Notices of Violation were obtained from the WV DEP AppXtender database for Mining and Reclamation Article 3 (SMCRA) Permitting, and Mining and Reclamation NPDES Permitting. Violation data were entered into Excel and loaded into ArcGIS Pro as a CSV text file with Lat/Long coordinates for each Violation. The CSV file was converted to a point feature class.Water quality data were downloaded in PDF format from the WVDEP AppXtender website. Non-searchable PDFs were converted via Optical Character Recognition, so that data could be copied. Sample results were copied and pasted manually to Notepad++, and several columns were re-ordered. Data was grouped by sample station and sorted chronologically. Sample data, contained in the associated table (SW_QM_Reports) were linked back to the monitoring station locations using the Station_ID text field in a geodatabase relationship class.Water monitoring station locations were taken from published Drainage Maps and from water quality reports. A CSV table was created with station Lat/Long locations and loaded into ArcGIS Pro. It was then converted to a point feature class.Stream Crossings and Road Construction Areas were digitized as polygon feature classes from project Drainage and Progress maps that were converted to TIFF image format from PDF and georeferenced.The ArcGIS Pro map - South Fork Cherry River Water Quality, was published as a service definition to ArcGIS Online.Symbology:NOV Summary - dark blue, solid pointLost Flats Surface Water Monitoring Sites: Data Available - medium blue point, black outlineLost Flats Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineLost Flats NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Surface Water Monitoring Sites: Data Available - medium blue point, black outlineBlue Knob Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineBlue Knob NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Biological Assessment Stations: Data Available - medium green point, black outlineBlue Knob Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Surface Water Monitoring Sites: Data Available - medium blue point, black outlineRocky Run Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineRocky Run NPDES Outlet Monitoring Sites - orange point, black outlineRocky Run Biological Assessment Stations: Data Available - medium green point, black outlineRocky Run Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Stream Crossings: turquoise blue polygon with red outlineRocky Run Haul Road Construction Areas: dark red (40% transparent) polygon with black outlineHaul Road No 2 Surface Water Monitoring Sites: Data Available - medium blue point, black outlineHaul Road No 2 Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineHaul Road No 2 NPDES Outlet Monitoring Sites - orange point, black outline
Facebook
TwitterRetirement Notice: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3) Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022 ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/ This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster. The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4 What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.
Facebook
TwitterThe Digital Geologic-GIS Map of Santa Monica Mountains National Recreation Area and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (samo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (samo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (samo_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (samo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (samo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (samo_geology_metadata_faq.pdf). Please read the samo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (samo_geology_metadata.txt or samo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geohazards-GIS Sinkhole Map of Mammoth Cave National Park and Vicinity, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (maca_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (maca_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (maca_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (maca_geohazard_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Kentucky Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (maca_geohazard_metadata.txt or maca_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Surficial Geologic-GIS Map of the Big Thicket National Preserve Area, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (btam_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (btam_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bith_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bith_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (btam_surficial_geology_metadata_faq.pdf). Please read the bith_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Water Development Board. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (btam_surficial_geology_metadata.txt or btam_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.
About the Perimeters in this Layer
Initially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.
In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.
CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.
About the Program
FRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.
The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.
The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):
There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).
Other uses include:
Facebook
TwitterAbstract Landslides are damaging and deadly, and they occur in every U.S. state. However, our current ability to understand landslide hazards at the national scale is limited, in part because spatial data on landslide occurrence across the U.S. varies greatly in quality, accessibility, and extent. Landslide inventories are typically collected and maintained by different agencies and institutions, usually within specific jurisdictional boundaries, and often with varied objectives and information attributes or even in disparate formats. The purpose of this data release is to provide an openly accessible, centralized map of existing information about landslide occurrence across the entire U.S. This data release is an update of previous versions 1 (Jones and others, 2019) and 2 (Belair and others, 2022). Changes relative to version 2 are summarized in us_ls_v3_changes.txt. It provides an integrated database of the landslides from these inventories (refer to US_Landslide_v3_gpkg) with a selection of uniform attributes, including links to the original digital inventory files (whenever available) (“Inv_URL”). The data release includes digital inventories created by both USGS and non-USGS authors. The original inventory is denoted by an abbreviation in the “Inventory” attribute. The full citation for each abbreviation can be found in us_ls_v3_references.csv. The date of the landslide event is included as a minimum and maximum (“Date_Min” and “Date_Max”) to accommodate events that happen within a range of dates. The date value is inherently difficult to interpret or discern due to the nature of landsliding, where some landslides move for long periods of time or move intermittently, and some areas can exhibit multiple landslide events. To preserve the constituent inventories as much as possible, we include all entries even if they are not considered landslides, such as “gullies” or “avalanche chutes.” We include a landslide type attribute when that information is available (“LS_Type”). The landslide classification system used in the original inventories is not always known or stated in the metadata, but many mapping entities use the schema from Cruden and Varnes (1996) or the updated schema from Hungr and others (2014). Given the wide range of landslide information sources in this data compilation, we provide an attribute to assess the relative confidence in the characterization of the _location and extent of each landslide (entry) (“Confidence”). The confidence level reflects the resolution and quality of input data, as well as the method used for identification and mapping. This confidence does not reflect a formal accuracy assessment of field attributes. Relative to the previous data releases (version 1 and 2), this update (v3) includes more inventories, updated confidence rules, a new landslide type attribute, a new unique identifier (“USGS_ID”), new machine-readable date fields, and an ancillary database containing all fields from the original inventories (refer to US_Landslide_v3_ancillary). Please contact gs-haz_landslides_inventory@usgs.gov for more information on how to contribute additional inventories to this community effort. When possible, please cite the constituent inventories as well as this data release. This data release includes: (1) a landslide point file and polygon file in multiple forms (US_Landslide_v3_gpkg, US_Landslide_v3_shp, US_Landslide_v3_csv), (2) an ancillary database with original fields (US_Landslide_v3_ancillary), (3) a spreadsheet that summarizes the confidence rules, their justification, and any extra analyses (us_ls_v3_analyses.csv), (4) a summary file of the changes made between version 2 and version 3 (us_ls_v3_changes.txt), (5) a file containing the references of the constituent inventories (us_ls_v3_references.csv), (6) and a readme (README.txt). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Data fields Field Names Definitions USGS_ID Unique USGS identifier for each landslide entry. Date_Min Minimum possible date of landslide occurrence. If date is known to the day, Date_Min will have a value while Date_Max is empty. Time zone is assumed to be local, except for Inventories ‘USGS Earthquake-Triggered Ground Failure’ and ‘USGS Seismogenic Mass Movements’ which are in UTC. Date_Max Maximum possible date of landslide occurrence. If date is known to the day, Date_Max will be empty while Date_Min has a value. Time zone is assumed to be local, except for Inventories ‘USGS Earthquake-Triggered Ground Failure’ and ‘USGS Seismogenic Mass Movements’ which are in UTC. Fatalities Number of fatalities caused by landslide event. Confidence Confidence in landslide (entry) extent, nature, and _location. LS_Type Landslide (entry) type. Classification schema of original inventories is often not specified. Inventory Name of original source inventory. Inv_URL URL or link to original source inventory. Info_Source Information source or sub-layer from original source inventory. Notes Unformatted notes field, includes additional information. Lat_N Latitude of point or polygon centroid in WGS 1984 Lon_W Longitude of point or polygon centroid in WGS 1984 Confidence attributes Confidence Definitions 1 Possible landslide (feature) in the area 2 Probable landslide (feature) in the area 3 Likely landslide (feature) at or near this _location 5 Moderate confidence in extent or nature of landslide (feature) at this _location 8 High confidence in extent or nature of landslide (feature) References Belair, G.M., Jones, E.S., Slaughter, S.L., and Mirus, B.B., 2022, Landslide Inventories across the United States version 2: U.S. Geological Survey data release, https://doi.org/10.5066/P9FZUX6N. Cruden, D.M. and Varnes, D.J., 1996, Landslide Types and Processes, in Turner, K.A. and Schuster R. L., eds., Landslides Investigation and Mitigation: Transportation Research Board, U.S. National Research Council Special Report 247, U.S. National Academy of Sciences, Chapter 3, p. 36-75. ESRI, 2023, ArcGIS Pro (Version 3.1.3), Redlands, CA: Environmental Systems Research Institute, Retrieved from https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources. Hungr, O., Leroueil, S., and Picarelli, L., 2014, The Varnes classification of landslide types, an update, Landslides, 11(2), p. 167-194, https://doi.org/10.1007/s10346-013-0436-y. Jones, E.S., Mirus, B.B, Schmitt, R.G., Baum, R.L., Burns, W.J., Crawford, M., Godt, J.W., Kirschbaum, D.B., Lancaster, J.T., Lindsey, K.O., McCoy, K.E., Slaughter, S., and Stanley, T.A., 2019, Landslide Inventories across the United States: U.S. Geological Survey data release, https://doi.org/10.5066/P9E2A37P. Python Software Foundation, 2023, Python Language Reference, version 3.9, Retrieved from http://www.python.org. QGIS.org, 2022, QGIS Geographic Information System (Version 3.28.4-Firenze), QGIS Association, Retrieved from http://www.qgis.org.
Facebook
TwitterThe Digital Geologic-GIS Map of San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin and Texas Water Development Board. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_geology_metadata.txt or saan_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the lowest two levels of protection known as GAP Status 3 and Gap Status 4. Because designations may overlap, some areas such as where Wilderness Areas overlap National Forests, may have a higher level of protection than indicated in this layer. See the USA Protected Areas or the USA Protected Areas - GAP 1-4 layers for the highest level of protection for a specific area.Dataset SummaryPhenomenon Mapped: Areas managed for multiple-use where extractive activities may occur (GAP Status 3 and 4)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgisThis layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 3 and 4 - areas subject to mulitple-use management where extractive activities may occur.The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Unprotected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Unprotected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Facebook
TwitterSpatial data layers of stream crossing point locations, cross-section polyline, centerline polyline, and bank polyline shapefiles have been developed for selected stream crossings in the Squannacook River basin, Massachusetts. The spatial data and calculated attribute values are model input data for U.S. Army Corps of Engineer’s Hydrologic Engineering Center’s River Analysis System (HEC-RAS) hydraulic models. The stream crossing point locations were derived from the North Atlantic Aquatic Connectivity Collaboration (NAACC) database. The stream channel cross-sections, centerlines, and bank polylines were derived using automated methods in a Geographic Information System (GIS) using ArcGIS Pro and Python programming language. The polyline shapefiles are Z-enabled and have elevation data derived from Light Detection and Ranging (lidar) Digital Elevation Models (DEM) for Z-coordinate vertex values in units of feet. The polyline shapefiles are also M-enabled and have profile stationing values for the M-coordinate vertex values in units of feet. The automated GIS processes delineated a series of stream channel cross-sections along lidar-derived stream centerlines and have stream channel bathymetry estimated from Massachusetts bankfull channel geometry equations (Bent and Waite, 2013). The bankfull equations were also used to derive stream bank polylines. This data release contains the following shapefiles in the Spatial_Data_Layers.zip file: 1. Stream_Crossing_Locations.shp - Esri point shapefile derived from the NAACC stream crossing database. 2. Stream_Crossing_Watersheds.shp - Esri polygon shapefile of lidar-derived watershed boundaries that estimate the upstream drainage area for each stream crossing _location. 3. Model_Cross_Sections.shp - Esri Z- and M-enabled polyline shapefile of the cross-section data used for hydraulic model input. 4. Model_Flowpaths.shp - Esri Z- and M-enabled polyline shapefile of the stream centerline and stream bank line data used for hydraulic model input. References: Bent, G.C., and Waite, A.M., 2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., http://dx.doi.org/10.3133/sir20135155
Facebook
TwitterThis dataset is the result of a multi-year effort led by the NHDES Coastal Program to compile and categorize coastal habitat restoation projects in the state of New Hampshire over the period from 1990 to present day. Generally, all of the coastal restoration projects within this dataset share the following qualities: 1) Located in the New Hampshire Coastal Zone communities; 2) Pro-actively restored jurisdictional coastal habitat; and 3) Received a dredge and fill permit from the NHDES Wetlands Bureau. Project types include oyster, eelgrass, living shoreline, salt marsh, dune, and river restoration.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.
About the Perimeters in this Layer
Initially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.
In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.
CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.
About the Program
FRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.
The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.
The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):
There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).
Other uses include:
Facebook
TwitterRetirement Notice: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space.This layer view displays state protected areas from the Protected Areas Database of the United States version 3.0. In the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover. Dataset SummaryPhenomenon Mapped: This filtered layer view displays state lands symbolized by the GAP status code field.Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022 Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, 3 or 4GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of Establishment The source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro. ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layer
Facebook
TwitterReason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly
Facebook
TwitterBathymetry is the measurement of the depth of the ocean floor, data that can be used for a variety of purposes such as: nautical charting, oceanographic research and modeling, habitat classification, maritime commerce, and recreational applications. The Multibeam Bathymetry Database (MBBDB) at NCEI collects and archives multibeam data from the earliest commercial installations (circa 1980) through today's modern high-resolution collections. Data are acquired from both U.S. and international government and academic sources (see individual cruise metadata records for source information) and consist of the raw (as collected) sonar data files. Datasets may also include processed or edited versions of the sonar data, ancillary data (i.e., sound velocity data), derived products (i.e., grids), and/or metadata for the data collection. The MBBDB provides data that span the globe and are discoverable and accessible via map interface or text-only search options. More information about the database can be found here.This ArcGIS image service provides a color shaded relief visualization of gridded multibeam data from the entire archive. Each individual survey has been gridded at a 3 arc-second cell size (~100m), divided into 10-degree tiles, then organized into an ArcGIS mosaic dataset. "Overviews" are then built upon the underlying tiles to provide a seamless raster that combines all the surveys. Where surveys overlap, the mean depth value of the contributing surveys is used.Note: NCEI's archive typically contains the raw, unedited multibeam data provided by the data contributors. There are some erroneous depth values and/or data artifacts visible in this service. These data should not be used for navigational purposes.There are three services providing access to the multibeam archive:Multibeam Bathymetry Mosaic (REST endpoint): provides depth values (default) or shaded-relief imagery. All surveys are combined together (using mean depth value) into "overviews".Multibeam Bathymetry Mosaic: Shaded Relief Visualization: tiled image service, provides rapid display of color shaded relief imagery.Multibeam Bathymetry Mosaic Subsets (REST endpoint): provides access to the individual surveys, and allows filtering by survey ID, platform name, source organization, survey date, etc. This service has slower performance than the others.This tiled service is also available as a downloadable tile package (.tpkx file) usable in ArcGIS Pro / ArcGIS Desktop software.For ship tracks of the multibeam surveys, along with additional metadata and links to obtain the data, see the corresponding Multibeam Bathymetric Surveys service.NCEI's Bathymetric Data Viewer (NOAA GeoPlatform entry) provides an interactive mapping interface to the multibeam database as well as other sources of bathymetric data.For visualization, the water depths are displayed using this color ramp:Mosaic last updated: Mar. 5, 2024.Metadata for the Multibeam Bathymetric Database
Facebook
TwitterThis feature layer describes the boundaries of National Wildlife Refuges in West Virginia.
Purpose:
This data was created by the U.S. Fish and Wildlife Service for the purpose of managing the lands and resources of the NWRs.
Source & Date:
The data for NWR USFS Lands West Virginia GIS Technical Center in January of 2022.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThe Digital Geologic-GIS Map of Alibates Flint Quarries National Monument and Lake Meredith National Recreational Area and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (aflm_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (aflm_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (alfl_lamr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (aflm_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (aflm_geology_metadata_faq.pdf). Please read the alfl_lamr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Water Development Board and Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (aflm_geology_metadata.txt or aflm_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).