8 datasets found
  1. c

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • s.cnmilf.com
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  2. Viewshed

    • rwanda.africageoportal.com
    • africageoportal.com
    • +3more
    Updated Jul 4, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://rwanda.africageoportal.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  3. USGS 3DEP Elevation - 30 m

    • cacgeoportal.com
    • digital-earth-pacificcore.hub.arcgis.com
    • +2more
    Updated Jul 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). USGS 3DEP Elevation - 30 m [Dataset]. https://www.cacgeoportal.com/datasets/0383ba18906149e3bd2a0975a0afdb8e
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic image service provides float values representing ground heights in meters, based on 3DEP seamless 1 arc-second data from USGS 3D Elevation Program (3DEP). Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: AnnuallyCoverage: conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico.Data Source: The data for this layer comes from 3DEP seamless 1 arc-second dataset from the USGS's 3D Elevation Program with original source data in its native coordinate system.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as hillshade, slope, consider using the appropriate server-side function defined on this service.

    Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. The layer is restricted to a 24,000 x 24,000 pixel limit.

    NOTE: The image service uses North America Albers Equal Area Conic projection (WKID: 102008) and resamples the data dynamically to the requested projection, extent and pixel size. For analyses requiring the highest accuracy, when using ArcGIS Desktop, you will need to use native coordinates (GCS_North_American_1983, WKID: 4269) and specify the native resolutions (0.0002777777777779 degrees) as the cell size geoprocessing environment setting and ensure that the request is aligned with the source pixels.

    Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates. Slope Degrees Slope Percentage Aspect Hillshade Slope Degrees MapThis layer has query, identify, and export image services available. The layer is restricted to a 24,000 x 24,000 pixel limit.

    This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  4. 150m Resolution Metadata

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 150m Resolution Metadata [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/esri::150m-resolution-metadata-114/explore?showTable=true
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  5. a

    1.2m Resolution Metadata

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Feb 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre d'enseignement Saint-Joseph de Chimay (2019). 1.2m Resolution Metadata [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/CESJ::1-2m-resolution-metadata
    Explore at:
    Dataset updated
    Feb 14, 2019
    Dataset authored and provided by
    Centre d'enseignement Saint-Joseph de Chimay
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  6. Multibeam Bathymetry Mosaic: Shaded Relief Visualization

    • hub.arcgis.com
    • oceans-esrioceans.hub.arcgis.com
    • +2more
    Updated May 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Multibeam Bathymetry Mosaic: Shaded Relief Visualization [Dataset]. https://hub.arcgis.com/maps/noaa::multibeam-bathymetry-mosaic-shaded-relief-visualization/about
    Explore at:
    Dataset updated
    May 5, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    Bathymetry is the measurement of the depth of the ocean floor, data that can be used for a variety of purposes such as: nautical charting, oceanographic research and modeling, habitat classification, maritime commerce, and recreational applications. The Multibeam Bathymetry Database (MBBDB) at NCEI collects and archives multibeam data from the earliest commercial installations (circa 1980) through today's modern high-resolution collections. Data are acquired from both U.S. and international government and academic sources (see individual cruise metadata records for source information) and consist of the raw (as collected) sonar data files. Datasets may also include processed or edited versions of the sonar data, ancillary data (i.e., sound velocity data), derived products (i.e., grids), and/or metadata for the data collection. The MBBDB provides data that span the globe and are discoverable and accessible via map interface or text-only search options. More information about the database can be found here.This ArcGIS image service provides a color shaded relief visualization of gridded multibeam data from the entire archive. Each individual survey has been gridded at a 3 arc-second cell size (~100m), divided into 10-degree tiles, then organized into an ArcGIS mosaic dataset. "Overviews" are then built upon the underlying tiles to provide a seamless raster that combines all the surveys. Where surveys overlap, the mean depth value of the contributing surveys is used.Note: NCEI's archive typically contains the raw, unedited multibeam data provided by the data contributors. There are some erroneous depth values and/or data artifacts visible in this service. These data should not be used for navigational purposes.There are three services providing access to the multibeam archive:Multibeam Bathymetry Mosaic (REST endpoint): provides depth values (default) or shaded-relief imagery. All surveys are combined together (using mean depth value) into "overviews".Multibeam Bathymetry Mosaic: Shaded Relief Visualization: tiled image service, provides rapid display of color shaded relief imagery.Multibeam Bathymetry Mosaic Subsets (REST endpoint): provides access to the individual surveys, and allows filtering by survey ID, platform name, source organization, survey date, etc. This service has slower performance than the others.This tiled service is also available as a downloadable tile package (.tpkx file) usable in ArcGIS Pro / ArcGIS Desktop software.For ship tracks of the multibeam surveys, along with additional metadata and links to obtain the data, see the corresponding Multibeam Bathymetric Surveys service.NCEI's Bathymetric Data Viewer (NOAA GeoPlatform entry) provides an interactive mapping interface to the multibeam database as well as other sources of bathymetric data.For visualization, the water depths are displayed using this color ramp:Mosaic last updated: Mar. 5, 2024.Metadata for the Multibeam Bathymetric Database

  7. World Continents

    • hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). World Continents [Dataset]. https://hub.arcgis.com/datasets/esri::world-continents/about
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Continents represents the boundaries for the continents of the world. It provides a basemap layer of the continents, delivering a straightforward method of selecting a small multicountry area for display or study.This layer is best viewed out beyond a scale of 1:3,000,000. The original source was extracted from the ArcWorld Supplement database in 2001 and updated as country boundaries coincident to regional boundaries change. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Continents.

  8. 4.8m Resolution Metadata

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRIジャパン株式会社 (2018). 4.8m Resolution Metadata [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/ej::4-8m-resolution-metadata
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    ESRIhttp://esri.com/
    Authors
    ESRIジャパン株式会社
    Area covered
    Description

    この衛星画像では、世界の多くの地域において、1 m もしくはより良い解像度の衛星画像と航空画像を提供しています。小中縮尺では世界全体をカバーする衛星画像を提供しており、15 m TerraColor 画像(縮尺レベル 1:591,000,000 から 1:72,000 の範囲)と 2.5 m SPOT 画像 (縮尺レベル 1:288,000 から 1:72,000 の範囲) を使用しています。アメリカ合衆国本土と西ヨーロッパにおいては、0.3 m 解像度の DigitalGlobe 衛星画像を使用しています。 DigitalGlobe から提供されている 1 m 以下の画像は、世界のその他の地域でも多く使用されています。アメリカ合衆国内では、1 m もしくはより良い NAIP 画像が利用可能な地域もあります。その他の地域では、GIS コミュニティにより提供されたさまざまな解像度の画像を使用しています。一部のコミュニティにおいては、非常に高解像度(最高 0.03 m)の画像が約 1:280 の縮尺レベルで利用できます。Esri のサービスにあなたのお持ちのデータを組み込むには、Community Maps Program を通じてデータをご提供いただけます。GIS コミュニティによって提供されているデータ ソースの詳細については、こちらのリスト Contributors for the World Imagery Map をご覧ください。提供範囲最新の更新情報および提供範囲については、下記のリンクをご参照ください。What's new in World ImageryWorld coverage mapCitations レイヤーこのレイヤーには、画像提供者、取得日、解像度、画像ソースなどの情報が含まれています。ArcGIS Desktop の個別属性ツールを使用すると、これらの引用情報について確認することができます。 引用情報は、情報が含まれている場所と縮尺でのみ取得できます。各縮尺レベルによって使用しているソースが異なるため、利用可能な最高解像度の画像について引用情報を確認するには、最大縮尺までズームしてください。引用情報はこちらの World Imagery with Metadata web map からもアクセスいただけます。使用このレイヤーは、ArcGIS Online マップ ビューア、ArcGIS Desktop、ArcGIS Pro に追加してご利用いただけます。ラベルや道路、鉄道などのリファレンスを重ねて見るには、こちらのマップ Imagery Hybrid をご参照ください。ラベルのみを重ねて見たい場合には、こちらのマップ Imagery with Labels もあります。フィードバック報告するべき問題を見つけましたか?こちらの Imagery Map Feedback マップから、見つけた問題についてコメントすることができます。 ArcGIS Online チームがあなたのフィードバックをレビューし、今後のアップデートの参考にさせていただきます。※このアイテムは、米国 Esri 社が提供する下記のサービスを日本語に翻訳したものです(2018 年 3 月時点)。最新情報は下記からご参照ください。World Imagery

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan

Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Hot Springs, Arkansas
Description

This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

Search
Clear search
Close search
Google apps
Main menu