82 datasets found
  1. Pirate Map style for ArcGIS Pro

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Feb 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2019). Pirate Map style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/58e11ce83ae64dcf87b084dd3b9bbcd2
    Explore at:
    Dataset updated
    Feb 21, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Yarrrrrrrr maps are too crisp and clean! You need a hand-painted grubby tattered treasure map from antiquity to make yer point. Download this here style for ArrrrrrcGIS Pro and be off to makin dern-near realistic maps ready for an eager public (or set designerrrr).To be used in conjunction with these tattered paper assets, available here (seriously, it's a pretty important bit). Or you can use them with an assortment of paper textures, available in Living Atlas here.Also, there's two cool hand-inked looking north arrows in the style. You can see them in the sample maps above.Happy Mapping! John Nelson

  2. Esri Community Maps AOIs

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Feb 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Esri Community Maps AOIs [Dataset]. https://hub.arcgis.com/maps/12431f51f19e4d2582eefcdc76392f87
    Explore at:
    Dataset updated
    Feb 1, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.

  3. OpenStreetMap (Blueprint)

    • indianamap.org
    • data.baltimorecity.gov
    • +15more
    Updated Jan 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). OpenStreetMap (Blueprint) [Dataset]. https://www.indianamap.org/maps/45a1aeaff6c649a688163701297c592a
    Explore at:
    Dataset updated
    Jan 30, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  4. Imhof style for ArcGIS Pro

    • hub.arcgis.com
    Updated Aug 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Imhof style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/1f25b31793cd4e7391b0cd51b9b79783
    Explore at:
    Dataset updated
    Aug 28, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson

  5. C

    DSM2 Georeferenced Model Grid

    • data.cnra.ca.gov
    • data.ca.gov
    • +2more
    Updated Aug 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2023). DSM2 Georeferenced Model Grid [Dataset]. https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
    Explore at:
    pdf(22669649), arcgis desktop map package(300515), pdf(22679496), zip(159621), arcgis desktop map package(211110), zip(26881), zip(158973), arcgis pro map package(153901), zip(228604), pdf(1443441), pdf(20463896), pdf(25962387)Available download formats
    Dataset updated
    Aug 28, 2023
    Dataset authored and provided by
    California Department of Water Resources
    Description

    ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.

    Monitoring Stations - shapefile with approximate locations of monitoring stations.

    DSM2 v8.2.0, calibrated version:

    • dsm2_8_2_grid_map_calibrated.mpkx - ArcGIS Pro map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_grid_map_calibrated.mpk - ArcGIS Desktop map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_grid_map_qgis.zip - QGIS map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_gridmap_shapefiles.zip - A zip file containing all the shapefiles used in the above map packages:
    • dsm2_8_2_0_calibrated_channels_centerlines - channel centerlines, follwing the path of CSDP centerlines
    • dsm2_8_2_0_calibrated_network_channels - channels represented by straight line segments which are connected the upstream and downstream nodes
    • dsm2_8_2_0_calibrated_nodes - DSM2 nodes
    • dsm2_8_2_0_calibrated_dcd_only_nodes - Nodes that are only used by DCD
    • dsm2_8_2_0_calibrated_and_dcd_nodes - Nodes that are shared by DSM2 and DCD
    • dsm2_8_2_0_calibrated_and_smcd_nodes - Nodes that are shared by DSM2 and SMCD
    • dsm2_8_2_0_calibrated_gates_actual_loc - The approximate actual locations of each gate in DSM2
    • dsm2_8_2_0_calibrated_gates_grid_loc - The locations of each gate in the DSM2 model grid
    • dsm2_8_2_0_calibrated_reservoirs - The approximate locations of the reservoirs in DSM2
    • dsm2_8_2_0_calibrated_reservoir_connections - Lines showing connections from reservoirs to nodes in DSM2

    DSM2 v8.2.1, historical version:

    • DSM2 v8.2.1, historical version grid map release notes (PDF), updated 7/12/2022
    • DSM2 v8.2.1, historical version grid map, single zoom level (PDF)
    • DSM2 v8.2.1, historical version grid map, multiple zoom levels (PDF) - PDF grid map designed to be printed on 3 foot wide plotter paper.
    • DSM2 v8.2.1, historical version map package for ArcGIS Desktop: A map package for ArcGIS Desktop containing the grid map layers with symbology.
    • DSM2 v8.2.1, historical version grid map shapefiles (zip): A zip file containing the shapefiles used in the grid map.

    Change Log

    7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.

  6. a

    OpenStreetMap

    • ethiopia.africageoportal.com
    • data.baltimorecity.gov
    • +46more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://ethiopia.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  7. USGS Historical Topographic Map Explorer

    • data.amerigeoss.org
    • hub.arcgis.com
    • +1more
    Updated Oct 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USGS Historical Topographic Map Explorer [Dataset]. https://data.amerigeoss.org/dataset/usgs-historical-topographic-map-explorer1
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Description

    The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:

    • Find a location of interest.
    • View the maps.
    • Compare the maps.
    • Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location.
    • Save the maps in an ArcGIS Online web map.

    Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.


    Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.

    Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.

    We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.

  8. Felt style for ArcGIS Pro

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2019). Felt style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/f25e23a34ba245c98a3791e0a661f19b
    Explore at:
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    I'd like you to make downloading, implementing, and sharing the output of, this felt-tastic style your new highest priority.So what do you get when you download this style, besides a rush of craft-induced adrenaline? These symbols...I've seeded the style with some pre-colored symbols but each and every one of these felty symbols can be dyed whatever color you want in the symbology panel. Here are some example maps using this style...Happy Mapping! John Nelson

  9. George Washington style for ArcGIS Pro

    • hub.arcgis.com
    Updated May 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). George Washington style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/191ef05f8bd844c68eee365ada32561b
    Explore at:
    Dataset updated
    May 30, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Did you know that George Washington was a cartographer? He was a surveyor and map maker in his early years, and continued to make his own maps for practical purposes throughout his life. Cool, right?George's StyleHere is a map he made of his farm, just dripping with hand-wrought charm:The ArcGIS Pro style available here is compiled of material textures and George's hand-drawn elements sampled from this very map. That means, when you use it, your map is wrought in the very hand of George Washington. What a time to be alive.Check out these examples that Ernst Eijkelenboom whipped up of his native Netherlands...Glorious.What You GetAre you ready to cartographicize like the first president of the United States? Here's what you'll find in the style...How to Install?Save this style file somewhere on your computer. Then, in Pro, open up the Catalog view, and expand the Style category. Right-click, and choose “Add.” Then just browse to where you saved George Washington. Pow! You’ll be whipping up maps that look like they were scribed by the right hand (I surmise, based on the way his trees lean) of George, himself.If you would like to make your own styles, based on the texture images I extracted from George’s map, then you can have at them here.Happy Presidential Throwback Mapping! John Nelson

  10. OpenStreetMap 3D Buildings

    • geoportal-pacificcore.hub.arcgis.com
    • uneca.africageoportal.com
    • +7more
    Updated Jun 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Buildings [Dataset]. https://geoportal-pacificcore.hub.arcgis.com/maps/ca0470dbbddb4db28bad74ed39949e25
    Explore at:
    Dataset updated
    Jun 3, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    South Pacific Ocean, Pacific Ocean
    Description

    Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  11. D

    Detroit Street View Panoramic Imagery

    • detroitdata.org
    • hub.arcgis.com
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2023). Detroit Street View Panoramic Imagery [Dataset]. https://detroitdata.org/dataset/detroit-street-view-panoramic-imagery
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    City of Detroit
    Area covered
    Detroit
    Description
    Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ 360° panoramic imagery (as well as LiDAR) is collected using a vehicle-mounted mobile mapping system.

    The City of Detroit distributes 360° panoramic street view imagery from the Detroit Street View program via Mapillary.com. Within Mapillary, users can search address, pan/zoom around the map, and load images by clicking on image points. Mapillary also provides several tools for accessing and analyzing information including:
    Please see Mapillary API documentation for more information about programmatic access and specific data components within Mapillary.
    DSV Logo
  12. National Hydrography Dataset Plus Version 2.1

    • geodata.colorado.gov
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://geodata.colorado.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Coordinate System: Web Mercator Auxiliary Sphere Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinksSource: EPA and USGSPublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  13. Watercolor style for ArcGIS Pro

    • hub.arcgis.com
    • cacgeoportal.com
    Updated May 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Watercolor style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/936edb7f57334763a8247d1019a9de51
    Explore at:
    Dataset updated
    May 22, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Watercolor maps are beautiful. Maps made in ArcGIS Pro can use a watercolor style to look realistically watercolory. Therefore, according to the transitive property, we can say that these maps may be beautiful.There are many utilities for a style like this. Mapping local parks and communities, creating your own vector basemaps, transforming digital features into plausibly tangible art, or just getting inspired by the combined wonder of geography and texture.Here are some example swatches of the point, line, and polygon styles available herein.Here are a couple examples of their use in Pro:Happy watercoloring! John Nelson

  14. a

    Land Cover 1992-2020

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://hub.arcgis.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  15. Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity, Wyoming, Montana and Idaho (NPS, GRD, GRI, YELL, YELL digital map) adapted from U.S. Geological Survey maps by Christiansen, Blank, Prostka, Smedes, Pierce, the U.S. Geological Survey, Elliot, Nelson, Wahl, Witkind, Love and others (1956 to 2007), and a Montana Bureau of Mines and Geology map by Berg, Lonn and Locke (1999) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-yellowstone-national-park-and-vicinity-wyoming-montana-and
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Montana, Wyoming
    Description

    The Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity, Wyoming, Montana and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yell_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yell_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Montana Bureau of Mines and Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. Burn areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). Burn areas [Dataset]. https://wifire-data.sdsc.edu/dataset/burn-areas
    Explore at:
    html, geojson, esri rest, zip, kml, csvAvailable download formats
    Dataset updated
    Sep 27, 2020
    Dataset provided by
    California Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.


    About the Perimeters in this Layer

    Initially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.

    In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.

    CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.


    About the Program

    FRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.

    The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.

    The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):

    • A layer depicting wildfire perimeters from contributing agencies current as of the previous fire year;
    • A layer depicting prescribed fires supplied from contributing agencies current as of the previous fire year;
    • A layer representing non-prescribed fire fuel reduction projects that were initially included in the database. Fuels reduction projects that are non prescribed fire are no longer included.

    Recommended Uses

    There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).

    Other uses include:

    • Improving fire prevention, suppression, and initial attack success.
    • Reduce and track hazards and risks in urban interface areas.
    • Provide information for fire ecology studies for example studying fire effects on vegetation over time.

    Download the Fire Perimeter GIS data here

    Download a statewide map of Fire Perimeters here


    Source: Fire and Resource Assessment Program (FRAP)

  17. a

    Heat Severity - USA 2022

    • keep-cool-global-community.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    United States
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  18. Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California...

    • catalog.data.gov
    • gimi9.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California (NPS, GRD, GRI, YOSE, YOSE digital map) adapted from U.S. Geological Survey Geologic Quadrangle Maps by Bateman, Kistler, Huber, Dodge, Krauskopf, Peck and others (1965, 1966, 1968, 1971, 1980, 1985, 1987, 1989 and 2002), Miscellaneous Field Studies Maps by Huber (1983), and Bateman and Krauskopf (1987) and a Geologic Investigations Series Map by Wahrhaftig (2000), and a California Geological Survey Map Sheet map by Chesterman (1975 [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yosemite-national-park-and-vicinity-california-nps-grd-gri-yos
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California
    Description

    The Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yose_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yose_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yose_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yose_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yose_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yose_geology_metadata.txt or yose_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. LRS 24.1 Map Package

    • virginiaroads.org
    • hub.arcgis.com
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Department of Transportation (2024). LRS 24.1 Map Package [Dataset]. https://www.virginiaroads.org/content/f523dec315cf4159aac383d13b827f73
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Virginia Department Of Transportation
    Authors
    Virginia Department of Transportation
    Area covered
    Description

    Virginia Department of Transportation 2024 Quarter One Linear Referencing SystemVDOT 24.1 LRS Release Map PackagePackage will be downloaded to your local 'Downloads' folder by default. Map package as downloaded is compressed. In ArcGIS Pro, browse to the Map Package in a local folder, and select 'Add and Open'.LRS 24.1 Release Documents

  20. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr; Lawrey, Eric, Dr (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric, Dr; Lawrey, Eric, Dr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.

    Method: The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (not yet published) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.

    Single merged composite GeoTiff: The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.

    Change Log: 2023-03-02: Eric Lawrey Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

    22 Nov 2023: Eric Lawrey Added the data and maps for close up of Mer. - 01-data/TS_DNRM_Mer-aerial-imagery/ - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    Source datasets: Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302 Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose. CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland This is the high resolution imagery used to create the map of Mer.

    Marine satellite imagery (Sentinel 2 and Landsat 8) (AIMS), https://eatlas.org.au/data/uuid/5d67aa4d-a983-45d0-8cc1-187596fa9c0c - World_AIMS_Marine-satellite-imagery

    Data Location: This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Styles (2019). Pirate Map style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/58e11ce83ae64dcf87b084dd3b9bbcd2
Organization logo

Pirate Map style for ArcGIS Pro

Explore at:
Dataset updated
Feb 21, 2019
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Styles
Description

Yarrrrrrrr maps are too crisp and clean! You need a hand-painted grubby tattered treasure map from antiquity to make yer point. Download this here style for ArrrrrrcGIS Pro and be off to makin dern-near realistic maps ready for an eager public (or set designerrrr).To be used in conjunction with these tattered paper assets, available here (seriously, it's a pretty important bit). Or you can use them with an assortment of paper textures, available in Living Atlas here.Also, there's two cool hand-inked looking north arrows in the style. You can see them in the sample maps above.Happy Mapping! John Nelson

Search
Clear search
Close search
Google apps
Main menu