13 datasets found
  1. 5. André Oliveira

    • hub.arcgis.com
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). 5. André Oliveira [Dataset]. https://hub.arcgis.com/documents/aa3734f37eaa4311ac17fd31645c5722
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r

  2. Viewshed

    • hub.arcgis.com
    • africageoportal.com
    • +2more
    Updated Jul 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://hub.arcgis.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  3. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    esri rest, geotif +5
    Updated Oct 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2024). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Oct 25, 2024
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  4. a

    NZ Elevation

    • digital-earth-pacificcore.hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated Aug 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2019). NZ Elevation [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/datasets/2ce4fe7d77024e719f8a04d2155b3fd2
    Explore at:
    Dataset updated
    Aug 5, 2019
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Will be updated as new data becomes availableProjectionNew Zealand Transverse Mercator 2000 (NZTM2000).Vertical DatumNew Zealand Vertical Datum 2016 (NZVD2016).The NZ Elevation layer is an elevation surface for use in 3D applications in the NZTM projection. By adding this layer to a Scene in ArcGIS Pro or in the Scene Viewer it will be define the base height in your application.See the metadata layer with information about the data here.NZTM Basemaps can be used on top of this service, providing it shares the same tiling scheme. When combining it with the NZ Basemaps provided by Eagle Technolgy, make sure to use the raster basemaps with the updated tiling scheme or one of the vector basemaps. All the compatible basemaps can be found in this group. When creating your own basemap or tiled layer make sure to use the tiling scheme provided here.The elevation service is made up of the available publicly-owned 1m and 2m dems. For areas where 1m/2m elevation data is not available the 8m dem provided by LINZ is being used. Outside of the coverage of the 8m dem, a 0m dem is used for visual purposes.This service is offered by Eagle Technology (Official Esri Distributor). Eagle Technology offers layers and maps that can be used in the ArcGIS platform. The Content team at Eagle Technology updates the layers on a regular basis and regularly adds new content to the Living Atlas. By using this content and combining it with other data you can create new information products quickly and easily.If you have any questions or remarks about the content, please let us now at livingatlas@eagle.co.nz

  5. a

    Legacy Lidar Elevation and Shaded Relief (Tile Service)

    • geo-massdot.opendata.arcgis.com
    • gis.data.mass.gov
    • +1more
    Updated Sep 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2021). Legacy Lidar Elevation and Shaded Relief (Tile Service) [Dataset]. https://geo-massdot.opendata.arcgis.com/datasets/massgis::legacy-lidar-elevation-and-shaded-relief-tile-service
    Explore at:
    Dataset updated
    Sep 12, 2021
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This tile service, hosted by MassGIS, features Lidar-derived elevation and shaded relief for the Commonwealth of Massachusetts.

    The service uses statewide versions of the digital elevation model and shaded relief from the Lidar DEM and Shaded Relief imagery.MassGIS created the tile service in ArcGIS Pro, using the "Multiply" Darkening blending mode to "burn in" the shaded relief to the elevation layer. The elevation layer is symbolized with a custom color ramp. The shaded relief is displayed with 45% transparency.View the data along with an elevation image service in the Massachusetts Elevation Finder.

  6. a

    Massachusetts Elevation Finder

    • open-data-massgis.hub.arcgis.com
    • gis.data.mass.gov
    Updated Sep 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2020). Massachusetts Elevation Finder [Dataset]. https://open-data-massgis.hub.arcgis.com/datasets/massachusetts-elevation-finder
    Explore at:
    Dataset updated
    Sep 1, 2020
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Massachusetts
    Description

    With this mapping application, users can click anywhere within the Commonwealth of Massachusetts to find the elevation at that location in both meters and feet. The elevation data digital elevation model (DEM), in integer units, are derived from statewide Lidar (2013-2021) Terrain Data. The Vertical Datum of the lidar data used to create the DEM is NAVD88 – Geoid18 (m).

    The map displays a tile service that shows the DEM using a custom color ramp along with Lidar-derived shaded relief image. The symbology was created by MassGIS staff in ArcGIS Pro using the 'multiply' layer blending option. At medium and large scales the MassGIS Map Features for Imagery tile layer displays atop the imagery.Click the "i" button in the lower left to view a legend.This application is hosted by MassGIS at ArcGIS Online.

  7. Terrain Ruggedness Index (TRI)

    • cartong-esriaiddev.opendata.arcgis.com
    • cacgeoportal.com
    • +3more
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Terrain Ruggedness Index (TRI) [Dataset]. https://cartong-esriaiddev.opendata.arcgis.com/content/28360713391948af9303c0aeabb45afd
    Explore at:
    Dataset updated
    Sep 27, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    The Terrain Ruggedness Index (TRI) is used to express the amount of elevation difference between adjacent cells of a DEM. This raster function template is used to generate a visual representation of the TRI with your elevation data. The results are interpreted as follows:0-80m is considered to represent a level terrain surface81-116m represents a nearly level surface117-161m represents a slightly rugged surface162-239m represents an intermediately rugged surface240-497m represents a moderately rugged surface498-958m represents a highly rugged surface959-4367m represents an extremely rugged surfaceWhen to use this raster function templateThe main value of this measurement is that it gives a relatively accurate view of the vertical change taking place in the terrain model from cell to cell. The TRI provides data on the relative change in height of the hillslope (rise), such as the side of a canyon.How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual TRI representation of your imagery. This index supports elevation data.References:Raster functionsApplicable geographiesThe index is a standard index which is designed to work globally.

  8. a

    NZ Elevation - Metadata

    • digital-earth-pacificcore.hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated Dec 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2021). NZ Elevation - Metadata [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/datasets/eaglegis::nz-elevation-metadata
    Explore at:
    Dataset updated
    Dec 18, 2021
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    South Pacific Ocean, Pacific Ocean
    Description

    See the NZ Elevation Layer for more information on the NZ Elevation layerThe NZ Elevation - Metadata layer provides information about the data used for the NZ Elevation layer. You can identify what areas use 1m or 2m DEM's derived from LiDAR and what areas use the 8m DEM provided by LINZ. You can also find information, whenever available, about capture dates, point cloud density and links to the layer's in the LINZ Data Service.The NZ Elevation layer is an elevation surface for use in 3D applications in the NZTM projection. By adding this layer to a Scene in ArcGIS Pro or in the Scene Viewer it will be define the base height in your application.NZTM Basemaps can be used on top of this service, providing it shares the same tiling scheme. When combining it with the NZ Basemaps provided by Eagle Technolgy, make sure to use the raster basemaps with the updated tiling scheme or one of the vector basemaps. All the compatible basemaps can be found in this group. When creating your own basemap or tiled layer make sure to use the tiling scheme provided here.The elevation service is made up of the available publicly-owned 1m and 2m dems. For areas where 1m/2m elevation data is not available the 8m dem provided by LINZ is being used. Outside of the coverage of the 8m dem, a 0m dem is used for visual purposes.This service is offered by Eagle Technology (Official Esri Distributor). Eagle Technology offers layers and maps that can be used in the ArcGIS platform. The Content team at Eagle Technology updates the layers on a regular basis and regularly adds new content to the Living Atlas. By using this content and combining it with other data you can create new information products quickly and easily.If you have any questions or remarks about the content, please let us now at livingatlas@eagle.co.nz

  9. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  10. s

    FRI: Digital terrain model

    • geohub.saskatchewan.ca
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Saskatchewan (2021). FRI: Digital terrain model [Dataset]. https://geohub.saskatchewan.ca/maps/915f48e5590b4b8e8450f80880fe9879
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset authored and provided by
    Government of Saskatchewan
    License

    https://gisappl.saskatchewan.ca/Html5Ext/Resources/GOS_Standard_Unrestricted_Use_Data_Licence_v2.0.pdfhttps://gisappl.saskatchewan.ca/Html5Ext/Resources/GOS_Standard_Unrestricted_Use_Data_Licence_v2.0.pdf

    Area covered
    Description

    Download: HereThe Saskatchewan Ministry of Environment, Forest Service Branch, has developed a forest resource inventory (FRI) which meets a variety of strategic and operational planning information needs for the boreal plains. Such needs include information on the general land cover, terrain, and growing stock (height, diameter, basal area, timber volume and stem density) within the provincial forest and adjacent forest fringe. This inventory provides spatially explicit information as 10 m or 20 m raster grids and as vectors polygons for relatively homogeneous forest stands or naturally non-forested areas with a 0.5 ha minimum area and a 2.0 ha median area. Digital terrain model (DTMRAW) is an expression of the bare earth orthometric elevation (m). DTMRAW is available here as a color-mapped 16-bit unsigned integer raster grid in GeoTIFF format with a 5 m pixel resolution. An ArcGIS Pro layer file (*.lyrx) is supplied for viewing DTMRAW data in the following 50 m elevation intervals.Domain: [NULL, 200…1500].RANGELABELREDGREENBLUE200 <= DTMRAW < 225200279432225 <= DTMRAW < 2752505111351275 <= DTMRAW < 3253007613170325 <= DTMRAW < 37535010015089375 <= DTMRAW < 425400124169108425 <= DTMRAW < 475450148188127475 <= DTMRAW < 525500173206146525 <= DTMRAW < 575550197225165575 <= DTMRAW < 625600226232127625 <= DTMRAW < 67565025523888675 <= DTMRAW < 72570025520363725 <= DTMRAW < 77575025516738775 <= DTMRAW < 82580018812655825 <= DTMRAW < 8758501218572For more information, see the Forest Inventory Standard of the Saskatchewan Environmental Code, Forest Inventory Chapter.

  11. b

    Storm Sewer Drainage Basin

    • data.bendoregon.gov
    • hub.arcgis.com
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bend, Oregon (2023). Storm Sewer Drainage Basin [Dataset]. https://data.bendoregon.gov/datasets/storm-sewer-drainage-basin/about
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    City of Bend, Oregon
    Area covered
    Description

    The City maintains a digital inventory of the stormwater sewer system drainage area (MS4 area) to aid in implementation of the Integrated Stormwater Management Program control measures. In 2023, the storm sewer drainage basin area was updated and included in the 2023 Integrated Stormwater Management Program Document. The storm sewer drainage area was updated using ArcGIS Pro to model drainage based on the City’s stormwater infrastructure GIS data and a Digital Elevation Model (DEM) derived from Light Detection and Ranging (LiDAR) captured in March 2022. City outfalls that discharge stormwater to surface waterbodies either directly or indirectly were identified as points for analysis. Stormwater Underground Injection Control infrastructure was also analyzed to distinguish between infiltration-only basins and basins draining to the storm sewer system. For more information, please see the 2023 Integrated Stormwater Management Program Document https://www.bendoregon.gov/government/departments/utilities/stormwater

  12. a

    Topographic Contours 2018

    • geodata-tlcgis.opendata.arcgis.com
    Updated Mar 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallahassee-Leon County GIS (2025). Topographic Contours 2018 [Dataset]. https://geodata-tlcgis.opendata.arcgis.com/datasets/d8cf7c817478446ea64b5be8b5f5bca4
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Tallahassee-Leon County GIS
    Description

    This downloadable zip file contains an ESRI File Geodatabase that is compatible with most versions of ArcGIS Pro, ArcMap, and AutoCAD Map 3D or Civil 3D. To view the geodatabase’s contents, please download the zip file to a local directory and extract its contents. This zipped geodatabase will require approximately 2.85 GB of disc space (3.09 GB extracted). Due to its size, the zip file may take some time to download.This topographic contour layer was derived from LiDAR collected in spring of 2018 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.THE PROJECT TEAMDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from February 05, 2018 thru April 25, 2018.ORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).

  13. a

    Topographic Contours 2020 Map Tile

    • hub.arcgis.com
    • geodata-tlcgis.opendata.arcgis.com
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallahassee-Leon County GIS (2022). Topographic Contours 2020 Map Tile [Dataset]. https://hub.arcgis.com/datasets/tlcgis::topographic-contours-2020-map-tile?uiVersion=content-views
    Explore at:
    Dataset updated
    Apr 4, 2022
    Dataset authored and provided by
    Tallahassee-Leon County GIS
    Area covered
    Description

    This topographic contour layer was derived from LiDAR collected in spring of 2020 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. This tile layer was generated as a Map Tile Package (.mtpkx) in ArcGIS Pro and published to ArcGIS online as a hosted tile layer. For web mapping compatibility, this layer has been re-projected from its original coordinate system to the web standard used by ESRI, Google, and Bing (Web Mercator Auxiliary Sphere).This feature layer can be downloaded from as a zipped file geodatabase or as a zipped CAD DWG file from this layer's Metadata LINK. Note - All downloads will be in local state plane coordinate system.Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.The Project TeamDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from TBDORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). 5. André Oliveira [Dataset]. https://hub.arcgis.com/documents/aa3734f37eaa4311ac17fd31645c5722
Organization logo

5. André Oliveira

Explore at:
40 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 1, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r

Search
Clear search
Close search
Google apps
Main menu