53 datasets found
  1. d

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  2. a

    ArcGIS Pro: An Introduction

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Pro: An Introduction [Dataset]. https://hub.arcgis.com/documents/3b9611661e994cbba901f36947d17ab3
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Learn about what is possible in 2D and 3D mapping, analysis, and editing.

  3. Introduction to ArcGIS Pro

    • teachwithgis.co.uk
    • lecturewithgis.co.uk
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2024). Introduction to ArcGIS Pro [Dataset]. https://teachwithgis.co.uk/datasets/introduction-to-arcgis-pro
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    You will need an ArcGIS login which will allow you to sign in to both ArcGIS Online and ArcGIS Pro.If you are a student, your university likely has logins that they can issue you. Once you have an ArcGIS login follow the adjacent video. ArcGIS will likely already be installed on certain campus computers where you can login immediately. For additional ArcGIS Pro installation guidance, follow the links below.

  4. Introduction to ArcGIS Pro Part 2

    • lecturewithgis.co.uk
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2024). Introduction to ArcGIS Pro Part 2 [Dataset]. https://lecturewithgis.co.uk/datasets/introduction-to-arcgis-pro-part-2
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Attribute tables are an essential part of working with GIS. In addition to the spatial element, feature classes will have additional data associated to them which can be viewed within the attribute table.To open an attribute table...Right click a layer within the contents paneClick 'Attribute Table'.

  5. a

    Introducing Arcgis Pro

    • hub.arcgis.com
    Updated Dec 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2018). Introducing Arcgis Pro [Dataset]. https://hub.arcgis.com/documents/94e3d3c12bd341759ae7ee61602b3647
    Explore at:
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    State of Delaware
    Description

    ArcGIS Pro allows you to store multiple items, such as maps, layouts, tables, and charts, in a single project and work with them as needed. The application also responds contextually to your work. Tabs on the ribbon change depending on the type of item you're working with.In this tutorial, you'll explore the main components of the ArcGIS Pro user interface—the ribbon, views, and panes—and their interactions.

  6. a

    Introduction to R Scripting with ArcGIS

    • edu.hub.arcgis.com
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2025). Introduction to R Scripting with ArcGIS [Dataset]. https://edu.hub.arcgis.com/documents/baec6865ffbc4c1c869a594b9cad8bc0
    Explore at:
    Dataset updated
    Jan 18, 2025
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This Tutorial consists of four tutorials that deal with integrating the statistical programming language R with ArcGIS for Desktop. Several concepts are covered which include configuring ArcGIS with R, writing basic R scripts, writing R scripts that work with ArcGIS data, and constructing R Tools for use within ArcGIS Pro. It is recommended that the tutorials are completed in sequential order. Each of the four tutorials (as well as a version of this document), can viewed directly from your Web browser by following the links below. However, you must obtain a complete copy of the tutorial files by downloading the latest release (or by cloning the tutorial repository on GitHub) if you wish to follow the tutorials interactively using ArcGIS and R software, along with pre-configured sample data.To download the tutorial documents and datasets, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/r-arcgis-tutorials.gitSoftware & Solutions Used: ArcGIS Pro 3.4 Internet browser (e.g., Mozilla Firefox, Google Chrome, Safari) R Statistical Computing Language – version 4.3.3 R-ArcGIS Bindings – version 1.0.1.311RStudio Desktop – version 2024.09.0+375Time to Complete: 2.5 h (excludes installation time)File Size: 115 MBDate Created: November 2017Last Updated: December 2024

  7. g

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro/
    Explore at:
    Description

    The metadata original format

  8. a

    Migration and Publishing workflows using ArcGIS Pro

    • edu.hub.arcgis.com
    Updated Oct 3, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2016). Migration and Publishing workflows using ArcGIS Pro [Dataset]. https://edu.hub.arcgis.com/documents/d6e553b5db004b82a779d9cb2e8bf1ba
    Explore at:
    Dataset updated
    Oct 3, 2016
    Dataset authored and provided by
    Education and Research
    Description

    Migration and Publishing workflows using ArcGIS ProOutline: ArcGIS Pro is a new desktop mapping and analysis application available to schools across Canada. This webinar will summarize common workflows for transitioning your existing ArcGIS Desktop (mxd, 3dd, etc.) documents to ArcGIS Pro, while also introducing you to new publishing workflows to share your work easily using ArcGIS Online. This session is aimed at faculty and students who are currently using ArcGIS software tools at universities and colleges, and who are keen to learn more about how they can quickly migrate their desktop work to ArcGIS Pro.Topics covered: Licensing ArcGIS Pro; Migration workflows; Publishing and sharing workflows with packages in ArcGIS Online. Video: https://youtu.be/92sBTiPCUW8

  9. Earth Observation with Satellite Remote Sensing in ArcGIS Pro

    • ckan.americaview.org
    Updated May 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Earth Observation with Satellite Remote Sensing in ArcGIS Pro [Dataset]. https://ckan.americaview.org/dataset/earth-observation-with-satellite-remote-sensing-in-arcgis-pro
    Explore at:
    Dataset updated
    May 3, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Lesson 1. An Introduction to working with multispectral satellite data in ArcGIS Pro In which we learn: • How to unpack tar and gz files from USGS EROS • The basic map interface in ArcGIS • How to add image files • What each individual band of Landsat spectral data looks like • The difference between: o Analysis-ready data: surface reflectance and surface temperature o Landsat Collection 1 Level 3 data: burned area and dynamic surface water o Sentinel2data o ISRO AWiFS and LISS-3 data Lesson 2. Basic image preprocessing In which we learn: • How to composite using the composite band tool • How to represent composite images • All about band combinations • How to composite using raster functions • How to subset data into a rectangle • How to clip to a polygon Lesson 3. Working with mosaic datasets In which we learn: o How to prepare an empty mosaic dataset o How to add images to a mosaic dataset o How to change symbology in a mosaic dataset o How to add a time attribute o How to add a time dimension to the mosaic dataset o How to view time series data in a mosaic dataset Lesson 4. Working with and creating derived datasets In which we learn: • How to visualize Landsat ARD surface temperature • How to calculate F° from K° using ARD surface temperature • How to generate and apply .lyrx files • How to calculate an NDVI raster using ISRO LISS-3 data • How to visualize burned areas using Landsat Level 3 data • How to visualize dynamic surface water extent using Landsat Level 3 data

  10. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  11. a

    Introduction to Python

    • geotech-center-repository-kctcs.hub.arcgis.com
    Updated Oct 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kentucky Community and Technical College System (2020). Introduction to Python [Dataset]. https://geotech-center-repository-kctcs.hub.arcgis.com/items/ba52adce0cdc42c6bd3d6bb0996f5c3e
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset authored and provided by
    Kentucky Community and Technical College System
    Description

    This course was created in part by funds from the National Science Foundation through grant DUE 1700496. It is a product of the National Geospatial Technology Center of Excellence (GeoTech Center).This is an introductory course in geospatial applications using Python. Python is a free open source computer scripting language. Python can be used in several different geospatial-mapping programs, for this class Esri ArcGIS Pro will be the main software utilized but some discussions of ArcGIS Online and QGIS will be included. Esri ArcGIS Pro is a 64-bit application and thus the 3.x Python family of code is used. These two versions of Python are not 100% compatible, some differences will be noted throughout the course. The libraries of commands used in the Python scripts are software specific and less compatible than just general Python, for example ArcGIS Pro and QGIS are both 64-bit applications but the libraries for each are unique. The libraries contain code related to specific geospatial operations.

  12. ArcGIS Pro COVID-19 Modeling Toolbox (Version 5 - Updated 11 MAY 2020)

    • prep-response-portal.napsgfoundation.org
    • coronavirus-resources.esri.com
    Updated Apr 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). ArcGIS Pro COVID-19 Modeling Toolbox (Version 5 - Updated 11 MAY 2020) [Dataset]. https://prep-response-portal.napsgfoundation.org/content/37ad6eb0d1034cd58844314a9b305de2
    Explore at:
    Dataset updated
    Apr 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Please note, the updated version of this toolbox is now available for download on this page. The COVID-19-Modeling-v1.zip file contains version 5 of the toolbox with updated documentation. Version 5 of the toolbox updates the CHIME Model v1.1.5 tool. The COVID-19Surge (CDC) model is unchanged in this version.More information about the toolbox can be found in the toolbox document. More information about the CHIME Model v1.1.5 tool, including the change log, can be found in the tool documentation and this video.More information about the COVID-19Surge (CDC) tool is included in the tool documentation and this video. CHIME Model v1.1.5 ToolVersion 4 - Updated 11 MAY 2020An implementation of Penn Medicine’s COVID-19 Hospital Impact Model for Epidemics (CHIME) for use in ArcGIS Pro 2.3 or later. This tool leverages SIR (Susceptible, Infected, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation. Version 4 of this tool is based on CHIME v1.1.5 (2020-05-07). Learn more about how CHIME works.Version 4 contains the following updates:Updated the CHIME tool from CHIME v1.1.2 to CHIME v1.1.5.Added a new parameter called Date of Social Distancing Measures Effect to specify the date when social distancing measures started showing their effects.Added a new parameter called Recovery to specify the number of recovered cases at the start of the model.COVID-19Surge (CDC) ToolVersion 1 - Released 04 MAY 2020An implementation of Centers for Disease Control and Prevention’s (CDC) COVID-19Surge for use in ArcGIS Pro 2.3 or later. This tool leverages SIICR (Susceptible, Infected, Infectious, Convalescing, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation based on the extent to which mitigation strategies such as social distancing or shelter-in-place recommendations are implemented. This tool is based on COVID-19Surge. Learn more about how COVID-19Surge works.Potential ApplicationsThe illustration above depicts the outputs of the COVID-19Surge (CDC) tool of the COVID-19 Modeling toolbox.A hospital systems administrator needs a simple model to project the number of patients the hospitals in the network will need to accommodate in the next 90 days due to COVID-19. You know the population served by each hospital, the date and level of current social distancing, the number of people who have recovered, and the number of patients that are currently hospitalized with COVID-19 in each facility. Using your hospital point layer, you run the CHIME Model v1.1.5 tool.An aid agency wants to estimate where and when resources will be required in the counties you serve. You know the population and number of COVID-19 cases today and 14 days ago in each county. You run the COVID-19Surge (CDC) tool using your county polygon data, introducing an Intervention Policy and New Infections Per Case (R0) driven by fields to account for differences in anticipated social distancing policies and effectiveness between counties.A county wants to understand how the lessening or removal of interventions may impact hospital bed availability within the county. You run the CHIME Model v1.1.5 and COVID-19Surge (CDC) tool, checking Add Additional Web App Fields in Summary in both tools. You display the published results from each tool in the Capacity Analysis configurable app so estimates can be compared between models.This toolbox requires any license of ArcGIS Pro 2.3 or higher in order to run. Steps for upgrading ArcGIS Pro can be found here.For questions, comments and support, please visit our COVID-19 GeoNet community.

  13. All Chapters Tutorial Data

    • hub.arcgis.com
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2020). All Chapters Tutorial Data [Dataset]. https://hub.arcgis.com/datasets/9f9984c3eadd420689cbeced693292b2
    Explore at:
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.

  14. Mapping on Mars

    • lecturewithgis.co.uk
    • teachwithgis.co.uk
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2023). Mapping on Mars [Dataset]. https://lecturewithgis.co.uk/datasets/mapping-on-mars
    Explore at:
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    This is the 2nd Storymap from the Introduction to ArcGIS Online for Planetary scientists.In this section we will learn how to populate our maps with data from 3 different sources:A csv published as a feature layer in AGOLPublicly shared data from AGOL and the Living AtlasShapefile shared as a web layer from ArcGIS Pro

  15. a

    Python for ArcGIS - Working with ArcGIS Notebooks

    • edu.hub.arcgis.com
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2024). Python for ArcGIS - Working with ArcGIS Notebooks [Dataset]. https://edu.hub.arcgis.com/documents/16fbaf21dc7b41c187ebcfd9f6ea1d58
    Explore at:
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This tutorial introduces you to using Python code in a Jupyter Notebook, an open source web application that enables you to create and share documents that contain rich text, equations and multimedia, alongside executable code and visualization of analysis outputs. The tutorial begins by stepping through the basics of setting up and being productive with Python notebooks. You will be introduced to ArcGIS Notebooks, which are Python Notebooks that are well-integrated within the ArcGIS platform. Finally, you will be guided through a series of ArcGIS Notebooks that illustrate how to create compelling notebooks for data science that integrate your own Python scripts using the ArcGIS API for Python and ArcPy in combination with thousands of open source Python libraries to enhance your analysis and visualization.To download the dataset Labs, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/arcgis-notebooks-tutorial.git.Software & Solutions Used: Required: This tutorial was last tested on August 27th, 2024, using ArcGIS Pro 3.3. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.Recommended: ArcGIS Online subscription account with permissions to use advanced Notebooks and GeoEnrichmentOptional: Notebook Server for ArcGIS Enterprise 11.3+Time to Complete: 2 h (excludes processing time)File Size: 196 MBDate Created: January 2022Last Updated: August 27, 2024

  16. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zhu, Guang-Fu
    Liu, Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  17. Data from: Risk of introduction and establishment of alien vertebrate...

    • springernature.figshare.com
    application/x-rar
    Updated Jan 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qing Zhang; Yanping Wang; Xuan Liu (2024). Risk of introduction and establishment of alien vertebrate species in transboundary neighboring areas [Dataset]. http://doi.org/10.6084/m9.figshare.24764388.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jan 30, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Qing Zhang; Yanping Wang; Xuan Liu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    There are 3 layer files in geodatabase file generated by ArcGIS Pro v.2.5.2, including origin data for identifying the introduction, establishment, and overall invasion risk at a spatial resolution of 0.5°and 1° grids. In addition, the layer file also shows the data about the richness and risk level of various groups of establishment alien vertebrates among grids and pairwise borders. The Excel data describing details of layer files, named “Data_information” is also included in the compressed file.

  18. a

    Introduction to Kinshasa Stories and Data

    • introduction-to-kinshasa-kinshasa.hub.arcgis.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Kinshasa (2025). Introduction to Kinshasa Stories and Data [Dataset]. https://introduction-to-kinshasa-kinshasa.hub.arcgis.com/datasets/introduction-to-kinshasa-stories-and-data/about
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    City of Kinshasa
    Area covered
    Description

    This is the platform for exploring Kinshasa's GIS data, discovering stories, data, maps and apps.You can load layers into ArcGIS Pro and use Online tools to analyse and combine datasets, as well as develop new web and mobile applications.

  19. Remote Sensing - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Remote Sensing - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/remote-sensing
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information. You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.

  20. V

    Old Town North Arts and Cultural District

    • odgavaprod.ogopendata.com
    • data-uvalibrary.opendata.arcgis.com
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Alexandria GIS Portal (2024). Old Town North Arts and Cultural District [Dataset]. https://odgavaprod.ogopendata.com/dataset/old-town-north-arts-and-cultural-district
    Explore at:
    kml, html, geojson, zip, arcgis geoservices rest api, csvAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    City of Alexandria GIS
    Authors
    City of Alexandria GIS Portal
    Area covered
    Old Town North
    Description

    A polygon feature depicting the Old Town North Arts and Cultural District in the City of Alexandria. The district was approved at a City Council hearing on April 14, 2018 and is part of Ordinance Section 6-900. The layer was created in ArcGIS Pro from a georeferenced overlay featured in the Old Town North Arts and Cultural District Overlay Map and Text Amendment document created by the Office of Voter Registration & Elections, City of Alexandria

    The total floor are for the Arts and Cultural Anchor space utilizing the Arts and Cultural Anchor space utilizing the Arts and Cultural Anchor Incentive within the Old Town North Arts and Cultural District Overlay will not exceed 100,000 square feet of the floor area as defined by the zoning Ordinance. The public benefit of the added density will be embodied in the ability of the proposed Arts and Cultural Anchor to further the goals of the Arts and Cultural District. More info can be found in the 18-7594 Presentation: Old Town North Arts and Cultural District Overlay Map and Text Amendment and the 18-7594 Staff Report: Rezoning #2018-0001 Old Town North Arts and Cultural District Map. Last updated January 2024.


Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro

Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

Search
Clear search
Close search
Google apps
Main menu