With the move to a Named User first model for licensing ArcGIS Pro it is important to be able to support users in all deployment environments. In this resource we look at how to license ArcGIS Pro for use offline when there will be no reliable internet connection.
As of the 1st August 2024 the following changes will take effect:ArcMap (ArcGIS Desktop) will no longer be available ArcGIS Pro will only be licensable through named users This means that there will be no provision of single use (ESU) and concurrent use (EFL) licence codes for the wide scale adoption for ArcGIS Pro from the 1st August 2024.
Laatste update: 19 februari 2024ArcGIS Pro-licenties kunnen op twee manieren worden beheerd. ArcGIS Pro-licenties worden in de standaardsituatie beheerd via het ArcGIS Online-organisatieportaal. De beheerder/administrator van het ArcGIS Online-organisatieportaal kan ArcGIS Pro-licenties toewijzen aan specifieke gebruikers (User Types) van de organisatie. Het is ook mogelijk om de licenties te beheren op dezelfde manier als de ArcGIS Desktop-licenties, namelijk als Single Use-licenties (autoriseren via ArcGIS Pro) en Concurrent Use-licenties (autoriseren via de ArcGIS License Server Administrator = License Manager). Beide methoden (ArcGIS Online en middels een autorisatiecode) worden in dit artikel verder toegelicht.Let op: De workflow die in de volgende stappen wordt beschreven, geldt voor add-on licenties en niet voor de GIS Professional User Type licentie.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This .zip file contains pre-configured files for members of the public to interact with Kendall County's public GIS layers in a desktop environment. Included are:An ArcGIS Pro PackageA QGIS Project FIleArcGIS Pro requires an ESRI license to use. See the ArcGIS Pro product page for more information.QGIS is free, open-source software that is available for a variety of computing environments. See the QGIS Downloads page to select the appropriate installation method.With the appropriate software installed, users can simply open the corresponding file. It may take a minute or two to load, due to the number of layers that need to load. Once loaded, users will have read-only access to all of the major public layers, and can adjust how they are displayed. In a desktop environment, users can also create and interact with other data sources, such as private site plans, annotations, and other public data layers from non-County entities.Please note that the layers included in these packages are the same live data sources found in the web maps. An internet connection is required for these files to function properly.
Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum
Please note, the updated version of this toolbox is now available for download on this page. The COVID-19-Modeling-v1.zip file contains version 5 of the toolbox with updated documentation. Version 5 of the toolbox updates the CHIME Model v1.1.5 tool. The COVID-19Surge (CDC) model is unchanged in this version.More information about the toolbox can be found in the toolbox document. More information about the CHIME Model v1.1.5 tool, including the change log, can be found in the tool documentation and this video.More information about the COVID-19Surge (CDC) tool is included in the tool documentation and this video. CHIME Model v1.1.5 ToolVersion 4 - Updated 11 MAY 2020An implementation of Penn Medicine’s COVID-19 Hospital Impact Model for Epidemics (CHIME) for use in ArcGIS Pro 2.3 or later. This tool leverages SIR (Susceptible, Infected, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation. Version 4 of this tool is based on CHIME v1.1.5 (2020-05-07). Learn more about how CHIME works.Version 4 contains the following updates:Updated the CHIME tool from CHIME v1.1.2 to CHIME v1.1.5.Added a new parameter called Date of Social Distancing Measures Effect to specify the date when social distancing measures started showing their effects.Added a new parameter called Recovery to specify the number of recovered cases at the start of the model.COVID-19Surge (CDC) ToolVersion 1 - Released 04 MAY 2020An implementation of Centers for Disease Control and Prevention’s (CDC) COVID-19Surge for use in ArcGIS Pro 2.3 or later. This tool leverages SIICR (Susceptible, Infected, Infectious, Convalescing, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation based on the extent to which mitigation strategies such as social distancing or shelter-in-place recommendations are implemented. This tool is based on COVID-19Surge. Learn more about how COVID-19Surge works.Potential ApplicationsThe illustration above depicts the outputs of the COVID-19Surge (CDC) tool of the COVID-19 Modeling toolbox.A hospital systems administrator needs a simple model to project the number of patients the hospitals in the network will need to accommodate in the next 90 days due to COVID-19. You know the population served by each hospital, the date and level of current social distancing, the number of people who have recovered, and the number of patients that are currently hospitalized with COVID-19 in each facility. Using your hospital point layer, you run the CHIME Model v1.1.5 tool.An aid agency wants to estimate where and when resources will be required in the counties you serve. You know the population and number of COVID-19 cases today and 14 days ago in each county. You run the COVID-19Surge (CDC) tool using your county polygon data, introducing an Intervention Policy and New Infections Per Case (R0) driven by fields to account for differences in anticipated social distancing policies and effectiveness between counties.A county wants to understand how the lessening or removal of interventions may impact hospital bed availability within the county. You run the CHIME Model v1.1.5 and COVID-19Surge (CDC) tool, checking Add Additional Web App Fields in Summary in both tools. You display the published results from each tool in the Capacity Analysis configurable app so estimates can be compared between models.This toolbox requires any license of ArcGIS Pro 2.3 or higher in order to run. Steps for upgrading ArcGIS Pro can be found here.For questions, comments and support, please visit our COVID-19 GeoNet community.
At https://learn.arcgis.com, users find scenario-based tutorials, using specific tools, built by Esri and users. Explore filters at top left of the gallery. K12 students and educators may explore tutorials that engage software in the ArcGIS School Bundle -- ArcGIS Online (includes Map Viewer, Scene Viewer, Survey123, Field Maps, QuickCapture, Dashboard, Story Maps, Experience Builder, Hub, Instant Apps, Web AppBuilder), Business Analyst, Community Analyst, GeoPlanner, Insights, ArcGIS Pro, ArcGIS Urban, and Drone2Map.These tutorials rely on the user having a proper license. K12 students and teachers may use these tutorials via their assigned school Org login, which should prevent sharing personally identifiable information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tutorial Audience: GIS / Technology SpecialistsEnd User Audience: Emergency Management Planning and Operations StaffProblem: Your County Emergency Management Agency is planning a training exercise and wants to make use of “Web GIS.” Typically, they have you print out a new wall map each operational period and the status of facilities (e.g. shelters) are maintained in spreadsheets. This time they want to coordinate planning and operations across multiple locations, with everyone having the most up to date information on a live map. For example, they want to be able update the status of evacuation zones and shelters without requiring GIS expertise. Can you provide them with a web app that gives them some simple tools and just the layers they need to get started? Use a simulated flood or any other incident type to guide you through this process.Solution: Operations Response AppRequirements: You will need a license for ArcGIS Pro and ArcGIS Online to complete this tutorial.Note: This application is used with the Public Information Application Tutorial.
Manually digitizing the track of an object can be a slow process. This model automates the object tracking process significantly, and hence speeds up motion imagery analysis workflows. It can be used with the Motion Imagery Toolset found in the Image Analyst extension to track objects. The detailed workflow and description of the object tracking capability in ArcGIS Pro can be found here.This model can be used for applications such as object follower and surveillance of stationary objects. It does not perform very well in case there are sudden camera shakes or abrupt scale changes.Using the modelFollow the guide to use the model. The model can be used with the Motion Imagery tools in ArcGIS Pro 2.8 and onwards. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS. Fine-tuning the modelThis model cannot be fine-tuned using ArcGIS tools.InputObject to track marked as a bounding box in 8-bit, 3-band high resolution full motion video / motion imagery. Recommended object size is greater than 15x15 (in pixels).OutputBounding box depicting object location in successive frames.Applicable geographiesThis model is expected to work well in all regions globally for any generic-type of objects of interest. However, results can vary for motion imagery that are statistically dissimilar to the training data.Model architectureThis model uses the SiamMask model architecture implemented in ArcGIS API for Python.Accuracy metricsThe model has an average precision score of 0.853. Training dataThe model was trained using image sequences from the DAVIS dataset licensed under CC BY 4.0 license, and further fine-tuned on aerial motion imagery.Sample resultsHere are a few results from the model.
For the automated workflows, we create Jupyter notebooks for each state. In these workflows, GIS processing to merge, extract and project GeoTIFF data was the most important process. For this process, we used ArcPy which is a python package to perform geographic data analysis, data conversion, and data management in ArcGIS (Toms, 2015). After creating state-scale LSS datasets in GeoTIFF format, we convert GeoTIFF to NetCDF using xarray and rioxarray Python packages. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. We used xarray to manipulate data type and add metadata in NetCDF file and rioxarray to save GeoTIFF to NetCDF format. Through these procedures, we created three composite HyddroShare resources to share state-scale LSS datasets. Due to the limitation of ArcGIS Pro license which is a commercial GIS software, we developed this Jupyter notebook on Windows OS.
Reason for SelectionProtected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator.Input DataSoutheast Blueprint 2023 subregions: CaribbeanSoutheast Blueprint 2023 extentNational Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee EasementPuerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp) 2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 3-14-2023A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page. TNC Lands - Public Layer, accessed 3-8-2023U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)Mapping StepsMost mapping steps were completed using QGIS (v 3.22) Graphical Modeler.Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.Merge the terrestrial PR and VI PAD-US layers.Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.Fix geometry errors in the resulting merged layer using Fix Geometry.Intersect the resulting fixed file with the Caribbean Blueprint subregion.Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.Clip the Census urban area to the Caribbean Blueprint subregion.Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered. Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.Clip to the Caribbean Blueprint 2023 subregion.As a final step, clip to the spatial extent of Southeast Blueprint 2023. Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator valuesIndicator values are assigned as follows:6 = 75+ acre urban park5 = >50 to <75 acre urban park4 = 30 to <50 acre urban park3 = 10 to <30 acre urban park2 = 5 to <10 acre urban park1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources. This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.Other Things to Keep in MindThis indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous. The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast because the landcover data available in the Caribbean does not assess percent impervious in a comparable way.Disclaimer: Comparing with Older Indicator VersionsThere are numerous problems with using Southeast Blueprint
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.A spatial representation of the locations of Michigan UIA Problem Resolution Offices (PRO).Data Source: PRO Locations
Problem Resolution Offices - Need Help?The UIA's Problem Resolution Offices (PROs) resolve customer problems and provide access to automated resources.PROs provide:Telephones and computers for the convenience of customers who may not have access to a computer or telephone to file their claim. If you are going to file an unemployment claim at a PRO, please bring: Your Social Security Number, your Driver's License Number or State Identification or your MARVIN PIN (if you have one); along with the names and addresses of employers you have worked for in the past 18 months with your quarterly gross earnings and the last date of employment with each employer. If you are not a U.S. citizen or national, you will need your Alien Registration Number and the expiration date of your work authorization.In-person help for problems with claimsA presence in the community that includes, on request, presentations about unemployment insurance services to employer, business, labor, and community groupsFile at a PRO: If you are going to file an unemployment claim at a PRO, please bring:Your Social Security Number, your Driver's License Number or State Identification or your MARVIN PIN (if you have one)If you are not a U.S. citizen or national, you will need your Alien Registration Number and the expiration date of your work authorization.Names and addresses of employers you have worked for in the past 18 months including quarterly gross earnings and the last date of employment with each.
Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly
Not seeing a result you expected?
Learn how you can add new datasets to our index.
With the move to a Named User first model for licensing ArcGIS Pro it is important to be able to support users in all deployment environments. In this resource we look at how to license ArcGIS Pro for use offline when there will be no reliable internet connection.