71 datasets found
  1. 02.1 Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
    Explore at:
    Dataset updated
    Feb 16, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

  2. a

    Migrate to ArcGIS Pro

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Migrate to ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cf52a95afe1842d88dbbc19a2ed0cb08
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    ArcGIS Pro is a different experience. It introduces a project-based file structure, terminology changes, and brand-new tools and capabilities (which you will very likely love once you get used to them). The courses and resources below will clarify the major differences between ArcMap and ArcGIS Pro and help you conquer the learning curve. Goals Understand key ArcGIS Pro terminology. Import map documents, geoprocessing models, and other ArcMap-created items into ArcGIS Pro. Access tools and functionality through the ArcGIS Pro ribbon-based interface.

  3. Firefly style for ArcGIS Pro

    • cacgeoportal.com
    Updated Mar 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Firefly style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/93a6d9ea3b54478193ba566ab9d8b748
    Explore at:
    Dataset updated
    Mar 9, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    This style comprises 20 distinct hues, plus a white version, of the firefly symbol family for points, lines, and polygons.Points have two flavors of symbols. One is a standard radial opacity decay with a molten white core. The other is a variant with a shimmer effect, if that's what you need.Line symbols are available in solid or dashed. Lines are a stack of colorized semitransparent strokes beneath a white stroke, to create a glow effect.Polygons are also available in two versions. One version applies the glow to the perimeter of the polygon in both inner and outer directions, with a semi-transparent fill. This is effective for non-adjacent polygons. The alternate version only applies an inner glow, to prevent blending and overlapping of adjacent polygons.This is an early version of these symbols and only the points respond to color selection.Learn how to install this style by visiting this salacious blog post.Learn more about Firefly Cartography here.Happy Firefly Mapping! John

  4. Illuminated labels for ArcGIS Pro text

    • cacgeoportal.com
    Updated Mar 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2019). Illuminated labels for ArcGIS Pro text [Dataset]. https://www.cacgeoportal.com/content/5189d6227cae42de89c1cdfaee396792
    Explore at:
    Dataset updated
    Mar 19, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Sometimes a basic solid color for your map's labels and text just isn't going to cut it. Here is an ArcGIS Pro style with light and dark gradient fills and shadow/glow effects that you can apply to map text via the "Text fill symbol" picker in your label pane. Level up those labels! Make them look touchable. Glassy. Shady. Intriguing.Find a how-to here.Save this style, add it to your ArcGIS Pro project, then use it for any text (including labels).**UPDATE**I've added a symbol that makes text look like is being illuminated from below, casting a shadow upwards and behind. Pretty dramatic if you ask me. Here is an example:Happy Mapping! John Nelson

  5. V24 Shields Layer File

    • hub.arcgis.com
    • gis-mdot.opendata.arcgis.com
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Department of Transportation (2024). V24 Shields Layer File [Dataset]. https://hub.arcgis.com/content/4c5e813cc7784422a6ff0c5e843d48a6
    Explore at:
    Dataset updated
    Apr 4, 2024
    Dataset authored and provided by
    Michigan Department of Transportationhttp://www.michigan.gov/mdot
    Description

    Follow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.

  6. n

    IRWIN Data Service User's Guide ( 20190325)

    • prep-response-portal.napsgfoundation.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Nov 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2019). IRWIN Data Service User's Guide ( 20190325) [Dataset]. https://prep-response-portal.napsgfoundation.org/documents/29d7b53aecc1491b9d42fd559368b22f
    Explore at:
    Dataset updated
    Nov 5, 2019
    Dataset authored and provided by
    NAPSG Foundation
    Description

    IntroductionIRWIN ArcGIS Online GeoPlatform Services The Integrated Reporting of Wildland-Fire Information (IRWIN) Production data is replicated every 60 seconds to the ArcGIS Online GeoPlatform organization so that read-only views can be provided for consumers. This replicated view is called the hosted datastore. The “IRWIN Data” group is a set of Feature Layer views based on the replicated IRWIN layers. These feature layers provide a near real-time feed of all valid IRWIN data. All incidents that have been shared through the integration service since May 20, 2014 are available through this service. The incident data provides the location of existing fires, size, conditions and several other attributes that help classify fires. The IRWIN Data service allows users to create a web map, share it with their organization, or pull it into ArcMap or ArcGIS Pro for more in-depth analysis.InstructionsTo allow the emergency management GIS staff to join the IRWIN Data group, they will need to set up an ArcGIS Online account through our account manager. Please send the response to Samantha Gibbes (Samantha.C.Gibbes@saic.com) and Kayloni Ahtong (kayloni_ahtong@ios.doi.gov). Use the below template and fill in each part as best as possible, where the point of contact (POC) is the person responsible for the account.Reply Email Body: The (name of application) application requests the following user account and access to the IRWIN Data group.POC Name: First name Last name and titlePOC Email: Username: <>_irwin (choose a username, something short, followed by _irwin)Business Justification: Once you are set up with the account, I will coordinate a call to go over any questions.

  7. New Amsterdam style for ArcGIS Pro

    • cacgeoportal.com
    Updated Sep 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). New Amsterdam style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/7e397116b3404b48bd29e46e9e87efd7
    Explore at:
    Dataset updated
    Sep 26, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Inspired by the book, Dirkzwager’s Guide to the New-Waterway, Rotterdam, Dordrecht, Europoort and Botlek for 1978, this style re-creates its crisp modernist colors balanced with charming hand-drawn landcover features and incorporates the tangible variability of print ink and aged paper.I was shown a wonderful example, provided by Eelco Berghuis, which was a gift from his grandfather.So I sampled colors and created fill and line symbol features with a print-like texture and bleed. When applied (admittedly pretty haphazardly) to New York City (New Amsterdam), for example, the style looks like this... And here are the style elements that comprise it... Find this and other styles by browsing this gallery. Happy Harbor Mapping! John Nelson

  8. Layout Template

    • visionzero.geohub.lacity.org
    Updated May 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2020). Layout Template [Dataset]. https://visionzero.geohub.lacity.org/content/77c378ca3c584ad99615ec762208754f
    Explore at:
    Dataset updated
    May 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Data for the tutorial Get started with ArcGIS Pro.Layout template gallery was added to ArcGIS Pro at 2.5. For earlier versions, download and import this layout file.

  9. Z

    Dataset for prediction of Nitrogen Dioxide in Madrid city

    • data.niaid.nih.gov
    Updated Feb 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iskandaryan, Ditsuhi; Ramos, Francisco; Trilles, Sergio (2022). Dataset for prediction of Nitrogen Dioxide in Madrid city [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5101389
    Explore at:
    Dataset updated
    Feb 14, 2022
    Dataset provided by
    Institute of New Imaging Technologies (INIT), Universitat Jaume I
    Authors
    Iskandaryan, Ditsuhi; Ramos, Francisco; Trilles, Sergio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset consists of nitrogen dioxide, meteorological data, and traffic data from January to June 2019, which were generated taking into account the spatial distribution of the monitoring stations. Using the ArcGIS Pro software, a grid was created (Top -4,486,449.725263 m; Bottom - 4,466,449.725263 m; Left - 434,215.234430 m; Right - 451,215.234430 m) with a cell size having a width and height equal to 1000 m. There are 340 cells in total (20 by 17). Each cell value includes nitrogen dioxide, meteorological, and traffic attributes from assigned stations at a certain time. The cell value without stations was assigned to zero. The generated grid was exported as Comma Separated Values (CSV) files. Overall, 4,344 CSV files were generated every hour during the first six months of 2019. Meteorological data include ultraviolet radiation, wind speed, wind direction, temperature, relative humidity, barometric pressure, solar irradiance, and precipitation, traffic data includes intensity, occupation, load, and average speed. The datasets have an hourly rate. The data were obtained from the Open Data portal of the Madrid City Council. There are 24 air quality monitoring stations, 26 meteorological monitoring stations, and more than 4,000 traffic measurement points (the location of the measurement points was provided on a monthly basis as these points changed monthly).

  10. a

    Full Range Heat Anomalies - USA 2022

    • hub.arcgis.com
    • giscommons-countyplanning.opendata.arcgis.com
    Updated Mar 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Full Range Heat Anomalies - USA 2022 [Dataset]. https://hub.arcgis.com/datasets/26b8ebf70dfc46c7a5eb099a2380ee1d
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  11. r

    Urban Heat Island Severity for U.S. cities - 2019

    • opendata.rcmrd.org
    • hub.arcgis.com
    • +2more
    Updated Sep 13, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2019). Urban Heat Island Severity for U.S. cities - 2019 [Dataset]. https://opendata.rcmrd.org/datasets/4f6d72903c9741a6a6ee6349f5393572
    Explore at:
    Dataset updated
    Sep 13, 2019
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of Arizona Dr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAADaphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  12. i06 Precise Surveys StateWaterProject

    • gis.data.cnra.ca.gov
    • data.cnra.ca.gov
    • +7more
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arina.Ushakova@water.ca.gov_DWR (2025). i06 Precise Surveys StateWaterProject [Dataset]. https://gis.data.cnra.ca.gov/datasets/f3d04b1dd46748fe927e77fc17021889
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Authors
    Arina.Ushakova@water.ca.gov_DWR
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Point feature class and related table containing the Precise Surveys measurement time series. Measurements include elevations, Northings and Eastings, distances, and point-to-point measurements. Northing and Easting measurements are in CA State Plane Coordinate systems, Elevations measurements are provided in NAVD88 or NGVD29. This dataset is for data exploration only. These measurements and point locations are not considered survey-grade since there may be nuances such as epochs, adjustments, and measurement methods that are not fully reflected in the GIS data. These values are not considered authoritative values and should not be used in-lieu of actual surveyed values provided by a licensed land surveyor. Related data and time series are stored in a table connected to the point feature class via a relationship class. There may be multiple table entries and time series associated to a single mark. Data was assembled through an import of Excel tables and import of mark locations in ArcGIS Pro. Records were edited by DOE, Geomatics, GDSS to resolve any non-unique mark names. This dataset was last updated 4/2024.

  13. v

    Manage Notebook Code Dependencies (MNCD - v1.3.1)

    • anrgeodata.vermont.gov
    Updated Jul 31, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Manage Notebook Code Dependencies (MNCD - v1.3.1) [Dataset]. https://anrgeodata.vermont.gov/content/11c80dd72ea64f3b8779165fbc57cede
    Explore at:
    Dataset updated
    Jul 31, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    Dealing with large Notebooks can be daunting. Wouldn’t it be nice to import existing logic from other Modules and Code Libraries just like you can with standalone installs of Python? Well, now you can! The Manage Notebook Code Dependencies (MNCD) tool allows you to manage a cache of Python ‘Code Sample’ and ‘Notebook’ item content in your user home folder. Once cached, the content from these items can be imported into your Notebook using the Python import statement, just like your standalone scripts do. Once you import the Python modules from these items, they become ‘Code Dependencies’ to your Notebook and local scripts.This Python logic contains Functions that manage caching Python 'Code Sample' and 'Notebook' item types from ArcGIS Online or Enterprise Portal, unpacking and storing their contents in your Notebook home directory. This makes them accessible to the Notebook Kernel and Python.Once the Python objects are stored, their locations are then added to Python's import path, allowing Python to import the locally cached Modules, Classes, and Functions right to your logic.This enables you to build or leverage existing libraries of reusable code or just offload the bulk of your Notebook logic as a modular Python Script, greatly simplifying your Notebook. Share your IDE developed Python code as a 'Python Code Sample' item, call the manageDependents function to load the item contents, and then import what you need. Later, when updating your Code Sample, the manageDependents function will automatically update the cached Module next time you run the Notebook or call the function.During the MNCD import process, the logic will check for and apply updates to the MNCD logic automatically, just like it does for any managed item.RevisionsOct 20, 2020: Version 1.1 provides the abilty to import logic from other Pyton Notebooks. By default, this will extract any Function or Class Code Block it finds, focusing on modular use. Disable this option when caching a Notebook item to allow full import of available code.May 23, 2023: Version 1.2 includes a new 'getDependentCode' function to handle loading code into the local namespace or scope. It also includes improvements that allow you to provide a gis connection or it can discover an active connection when managing items.Jun 23, 2023: Version 1.3 includes updates that allow support for ArcGIS Enterprise Portal, ArcGIS Pro, and local Python use. Added 'setCachePath' function to support custom cache storage locations.To get started, launch the Installer Notebook and install this Python logic in your user home, accessible to the Notebook Kernel. A ReadMe document has been provided in the install folder. Be sure to review the examples available in the Installer Notebook.Review the MNCD documentation before you installTo get started, use the Installer Notebook to deploy the MNCD tool to ArcGIS Online or Enterprise PortalUsage:Run Installer to add the MNCD logic to your account home folder. Or you can download and store MNCD locally for use in ArcGIS Pro and Python.Import the MNCD module in your Notebook or Python logic using: import mncdWhen ready, call mncd.manageDependents function and provide the Online Item Id(s) you wish MNCD to cache and manageNow use standard Python import command to import the Functions and Classes from the cached Module(s), just like you would from a standalone script.If a cached item is no longer needed, call mncd.removeDependents function and incude the Item Id(s) you wish to remove from the cacheIf the Managed Notebook Code Dependencies logic is no longer required, run the Installer once again to remove

  14. W

    Burn areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    csv, esri rest +4
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). Burn areas [Dataset]. https://wifire-data.sdsc.edu/dataset/burn-areas
    Explore at:
    csv, geojson, html, kml, zip, esri restAvailable download formats
    Dataset updated
    Sep 27, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.


    About the Perimeters in this Layer

    Initially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.

    In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.

    CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.


    About the Program

    FRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.

    The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.

    The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):

    • A layer depicting wildfire perimeters from contributing agencies current as of the previous fire year;
    • A layer depicting prescribed fires supplied from contributing agencies current as of the previous fire year;
    • A layer representing non-prescribed fire fuel reduction projects that were initially included in the database. Fuels reduction projects that are non prescribed fire are no longer included.

    Recommended Uses

    There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).

    Other uses include:

    • Improving fire prevention, suppression, and initial attack success.
    • Reduce and track hazards and risks in urban interface areas.
    • Provide information for fire ecology studies for example studying fire effects on vegetation over time.

    Download the Fire Perimeter GIS data here

    Download a statewide map of Fire Perimeters here


    Source: Fire and Resource Assessment Program (FRAP)

  15. U

    Heat Severity - USA 2020

    • data.unep.org
    Updated Dec 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN World Environment Situation Room (2022). Heat Severity - USA 2020 [Dataset]. https://data.unep.org/app/dataset/wesr-arcgis-wm-heat-severity---usa-2020
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    UN World Environment Situation Room
    Area covered
    United States
    Description

    This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2019 and 2020.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Pete.Aniello@tpl.org with feedback.Terms of UseYou understand and agree, and will advise any third party to whom you give any or all of the data, that The Trust for Public Land is neither responsible nor liable for any viruses or other contamination of your system arising from use of The Trust for Public Land’s data nor for any delays, inaccuracies, errors or omissions arising out of the use of the data. The Trust for Public Land’s data is distributed and transmitted "as is" without warranties of any kind, either express or implied, including without limitation, warranties of title or implied warranties of merchantability or fitness for a particular purpose. The Trust for Public Land is not responsible for any claim of loss of profit or any special, direct, indirect, incidental, consequential, and/or punitive damages that may arise from the use of the data. If you or any person to whom you make the data available are downloading or using the data for any visual output, attribution for same will be given in the following format: "This [document, map, diagram, report, etc.] was produced using data, in whole or in part, provided by The Trust for Public Land."

  16. a

    South Fork Cherry River Water Quality

    • conservation-abra.hub.arcgis.com
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny-Blue Ridge Alliance (2023). South Fork Cherry River Water Quality [Dataset]. https://conservation-abra.hub.arcgis.com/maps/3b366a6bc44e4392847b71ec82038173
    Explore at:
    Dataset updated
    Feb 22, 2023
    Dataset authored and provided by
    Allegheny-Blue Ridge Alliance
    Area covered
    Description

    Purpose:This feature layer describes water quality sampling data performed at several operating coal mines in the South Fork of Cherry watershed, West Virginia.Source & Data:Data was downloaded from WV Department of Environmental Protection's ApplicationXtender online database and EPA's ECHO online database between January and April, 2023.There are five data sets here: Surface Water Monitoring Sites, which contains basic information about monitoring sites (name, lat/long, etc.) and NPDES Outlet Monitoring Sites, which contains similar information about outfall discharges surrounding the active mines. Biological Assessment Stations (BAS) contain similar information for pre-project biological sampling. NOV Summary contains locations of Notices of Violation received by South Fork Coal Company from WV Department of Environmental Protection. The Quarterly Monitoring Reports table contains the sampling data for the Surface Water Monitoring Sites, which actually goes as far back as 2018 for some mines. Parameters of concern include iron, aluminum and selenium, among others.A relationship class between Surface Water Monitoring Sites and the Quarterly Monitoring Reports allows access to individual sample results.Processing:Notices of Violation were obtained from the WV DEP AppXtender database for Mining and Reclamation Article 3 (SMCRA) Permitting, and Mining and Reclamation NPDES Permitting. Violation data were entered into Excel and loaded into ArcGIS Pro as a CSV text file with Lat/Long coordinates for each Violation. The CSV file was converted to a point feature class.Water quality data were downloaded in PDF format from the WVDEP AppXtender website. Non-searchable PDFs were converted via Optical Character Recognition, so that data could be copied. Sample results were copied and pasted manually to Notepad++, and several columns were re-ordered. Data was grouped by sample station and sorted chronologically. Sample data, contained in the associated table (SW_QM_Reports) were linked back to the monitoring station locations using the Station_ID text field in a geodatabase relationship class.Water monitoring station locations were taken from published Drainage Maps and from water quality reports. A CSV table was created with station Lat/Long locations and loaded into ArcGIS Pro. It was then converted to a point feature class.Stream Crossings and Road Construction Areas were digitized as polygon feature classes from project Drainage and Progress maps that were converted to TIFF image format from PDF and georeferenced.The ArcGIS Pro map - South Fork Cherry River Water Quality, was published as a service definition to ArcGIS Online.Symbology:NOV Summary - dark blue, solid pointLost Flats Surface Water Monitoring Sites: Data Available - medium blue point, black outlineLost Flats Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineLost Flats NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Surface Water Monitoring Sites: Data Available - medium blue point, black outlineBlue Knob Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineBlue Knob NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Biological Assessment Stations: Data Available - medium green point, black outlineBlue Knob Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Surface Water Monitoring Sites: Data Available - medium blue point, black outlineRocky Run Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineRocky Run NPDES Outlet Monitoring Sites - orange point, black outlineRocky Run Biological Assessment Stations: Data Available - medium green point, black outlineRocky Run Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Stream Crossings: turquoise blue polygon with red outlineRocky Run Haul Road Construction Areas: dark red (40% transparent) polygon with black outlineHaul Road No 2 Surface Water Monitoring Sites: Data Available - medium blue point, black outlineHaul Road No 2 Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineHaul Road No 2 NPDES Outlet Monitoring Sites - orange point, black outline

  17. d

    SF Bay Eelgrass 45m Buffer (BCDC 2020)

    • catalog.data.gov
    • data.cnra.ca.gov
    • +6more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2025). SF Bay Eelgrass 45m Buffer (BCDC 2020) [Dataset]. https://catalog.data.gov/dataset/sf-bay-eelgrass-45m-buffer-bcdc-2020-ef205
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Area covered
    San Francisco Bay
    Description

    This layer is a 45-meter growth buffer surrounding the maximum extent of eelgrass (green layer called "SF Bay Eelgrass") surveyed in San Francisco Bay. Eelgrass beds are highly dynamic and the exact location and extent of eelgrass beds can change across seasons and years. Thus, the purpose of the 45-meter growth buffer, as described in the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation is to account for areas between eelgrass patches, temporal variation in bed extent, and potential bed expansion. In cases where a dredge project intersects with the 45-meter growth buffer direct impacts to eelgrass may occur and therefore assessment, minimization, and mitigation measures may be required on a project-by-project basis. A pre-dredge eelgrass area and density survey is required 30 days prior to the start of dredging and should be submitted to the LTMS permitting agencies. Methods for creating this layer are as follows: Downloaded Baywide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from San Francisco Estuary Institute (SFEI) website. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the input layers. Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the buffer layer resulted in fragments on land or behind levees.

  18. d

    SF Bay Eelgrass 250m Buffer (BCDC 2021)

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2025). SF Bay Eelgrass 250m Buffer (BCDC 2021) [Dataset]. https://catalog.data.gov/dataset/sf-bay-eelgrass-250m-buffer-bcdc-2021-3c7b9
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Area covered
    San Francisco Bay
    Description

    This orange layer shows a 250-meter turbidity buffer of the blue 45-meter growth buffer (blue layer called "SF Bay Eelgrass 45m Buffer") adjacent to the maximum extent eelgrass survey in the San Francisco Bay. When a dredging project’s footprint overlaps with this 250-meter buffer, indirect impacts to eelgrass are assessed and best management practices are required per the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation. Methods for creating this layer are as follows: Downloaded Bay-wide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from SFEI. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the 2003, 2009, 2014, and 2019 survey data . Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent (this represents the 45-meter eelgrass buffer layer also found in this Web Application). To create the 250-meter turbidity buffer from there, the same methods were used as follows. Used Buffer tool to develop a single multipart shapefile with a 250-meter buffer from the 45-meter buffer layer. Clipped the 250-meter turbidity buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the 250-meter turbidity buffer layer resulted in fragments on land or behind levees.

  19. D

    Detroit Street View Panoramic Imagery

    • detroitdata.org
    • data.detroitmi.gov
    • +1more
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2025). Detroit Street View Panoramic Imagery [Dataset]. https://detroitdata.org/dataset/detroit-street-view-panoramic-imagery
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    City of Detroit
    Area covered
    Detroit
    Description
    Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ 360° panoramic imagery (as well as LiDAR) is collected using a vehicle-mounted mobile mapping system.

    The City of Detroit distributes 360° panoramic street view imagery from the Detroit Street View program via Mapillary.com. Within Mapillary, users can search address, pan/zoom around the map, and load images by clicking on image points. Mapillary also provides several tools for accessing and analyzing information including:
    Please see Mapillary API documentation for more information about programmatic access and specific data components within Mapillary.
    DSV Logo
  20. e

    Pro Arc Welding And Cutting Systems Private Export Import Data | Eximpedia

    • eximpedia.app
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Pro Arc Welding And Cutting Systems Private Export Import Data | Eximpedia [Dataset]. https://www.eximpedia.app/companies/pro-arc-welding-and-cutting-systems-private/28132679
    Explore at:
    Dataset updated
    Nov 29, 2025
    Description

    Pro Arc Welding And Cutting Systems Private Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
Organization logo

02.1 Integrating Data in ArcGIS Pro

Explore at:
Dataset updated
Feb 16, 2017
Dataset authored and provided by
Iowa Department of Transportationhttps://iowadot.gov/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

Search
Clear search
Close search
Google apps
Main menu