This style comprises 20 distinct hues, plus a white version, of the firefly symbol family for points, lines, and polygons.Points have two flavors of symbols. One is a standard radial opacity decay with a molten white core. The other is a variant with a shimmer effect, if that's what you need.Line symbols are available in solid or dashed. Lines are a stack of colorized semitransparent strokes beneath a white stroke, to create a glow effect.Polygons are also available in two versions. One version applies the glow to the perimeter of the polygon in both inner and outer directions, with a semi-transparent fill. This is effective for non-adjacent polygons. The alternate version only applies an inner glow, to prevent blending and overlapping of adjacent polygons.This is an early version of these symbols and only the points respond to color selection.Learn how to install this style by visiting this salacious blog post.Learn more about Firefly Cartography here.Happy Firefly Mapping! John
Sometimes a basic solid color for your map's labels and text just isn't going to cut it. Here is an ArcGIS Pro style with light and dark gradient fills and shadow/glow effects that you can apply to map text via the "Text fill symbol" picker in your label pane. Level up those labels! Make them look touchable. Glassy. Shady. Intriguing.Find a how-to here.Save this style, add it to your ArcGIS Pro project, then use it for any text (including labels).**UPDATE**I've added a symbol that makes text look like is being illuminated from below, casting a shadow upwards and behind. Pretty dramatic if you ask me. Here is an example:Happy Mapping! John Nelson
You’ll be hard pressed to find a current-day national park art poster that isn’t designed in the WPA Poster aesthetic (there’s also a joyous cottage industry of parody posters that cite negative yelp reviews). Not wanting to feel left out, here are some maps made in ArcGIS Pro, echoing that design sensibility.Here are some examples using Corine Land Cover vector data:Here are the components of this style:
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
In this tutorial, you will explore some of the many ways to work with image services in ArcGIS Pro using data from the ArcGIS Living Atlas of the World.
This style consists of two, and only two, symbols. One pin point symbol and one paper polygon symbol.But they can be dynamically colored in the symbology panel. Here's a one-minute how to.
I'd like you to make downloading, implementing, and sharing the output of, this felt-tastic style your new highest priority.So what do you get when you download this style, besides a rush of craft-induced adrenaline? These symbols...I've seeded the style with some pre-colored symbols but each and every one of these felty symbols can be dyed whatever color you want in the symbology panel. Here are some example maps using this style...Happy Mapping! John Nelson
Inspired by the book, Dirkzwager’s Guide to the New-Waterway, Rotterdam, Dordrecht, Europoort and Botlek for 1978, this style re-creates its crisp modernist colors balanced with charming hand-drawn landcover features and incorporates the tangible variability of print ink and aged paper.I was shown a wonderful example, provided by Eelco Berghuis, which was a gift from his grandfather.So I sampled colors and created fill and line symbol features with a print-like texture and bleed. When applied (admittedly pretty haphazardly) to New York City (New Amsterdam), for example, the style looks like this...And here are the style elements that comprise it...Happy Harbor Mapping! John Nelson
Please note, the updated version of this toolbox is now available for download on this page. The COVID-19-Modeling-v1.zip file contains version 5 of the toolbox with updated documentation. Version 5 of the toolbox updates the CHIME Model v1.1.5 tool. The COVID-19Surge (CDC) model is unchanged in this version.More information about the toolbox can be found in the toolbox document. More information about the CHIME Model v1.1.5 tool, including the change log, can be found in the tool documentation and this video.More information about the COVID-19Surge (CDC) tool is included in the tool documentation and this video. CHIME Model v1.1.5 ToolVersion 4 - Updated 11 MAY 2020An implementation of Penn Medicine’s COVID-19 Hospital Impact Model for Epidemics (CHIME) for use in ArcGIS Pro 2.3 or later. This tool leverages SIR (Susceptible, Infected, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation. Version 4 of this tool is based on CHIME v1.1.5 (2020-05-07). Learn more about how CHIME works.Version 4 contains the following updates:Updated the CHIME tool from CHIME v1.1.2 to CHIME v1.1.5.Added a new parameter called Date of Social Distancing Measures Effect to specify the date when social distancing measures started showing their effects.Added a new parameter called Recovery to specify the number of recovered cases at the start of the model.COVID-19Surge (CDC) ToolVersion 1 - Released 04 MAY 2020An implementation of Centers for Disease Control and Prevention’s (CDC) COVID-19Surge for use in ArcGIS Pro 2.3 or later. This tool leverages SIICR (Susceptible, Infected, Infectious, Convalescing, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation based on the extent to which mitigation strategies such as social distancing or shelter-in-place recommendations are implemented. This tool is based on COVID-19Surge. Learn more about how COVID-19Surge works.Potential ApplicationsThe illustration above depicts the outputs of the COVID-19Surge (CDC) tool of the COVID-19 Modeling toolbox.A hospital systems administrator needs a simple model to project the number of patients the hospitals in the network will need to accommodate in the next 90 days due to COVID-19. You know the population served by each hospital, the date and level of current social distancing, the number of people who have recovered, and the number of patients that are currently hospitalized with COVID-19 in each facility. Using your hospital point layer, you run the CHIME Model v1.1.5 tool.An aid agency wants to estimate where and when resources will be required in the counties you serve. You know the population and number of COVID-19 cases today and 14 days ago in each county. You run the COVID-19Surge (CDC) tool using your county polygon data, introducing an Intervention Policy and New Infections Per Case (R0) driven by fields to account for differences in anticipated social distancing policies and effectiveness between counties.A county wants to understand how the lessening or removal of interventions may impact hospital bed availability within the county. You run the CHIME Model v1.1.5 and COVID-19Surge (CDC) tool, checking Add Additional Web App Fields in Summary in both tools. You display the published results from each tool in the Capacity Analysis configurable app so estimates can be compared between models.This toolbox requires any license of ArcGIS Pro 2.3 or higher in order to run. Steps for upgrading ArcGIS Pro can be found here.For questions, comments and support, please visit our COVID-19 GeoNet community.
This is a video demonstrating how to create an offline map in ArcGIS Pro. Steps:Start with creating a vector tile package (.vtpk) from vector data.Add the vector tile package on top of other relevant data in a basemap view. The other data can be a raster image or any of the Esri's default basemaps.Add the basemap into another map view. In this map, you can add other operational layers on top of the basemap.Create a mobile map package (.mmpk) from the multi-layered map.The mobile map package can then be shared through ArcGIS Enterprise portal or manually copied to mobile devices.Author: Irvan Salim - Solution Engineer from Esri IndonesiaCopyright © 2020 Esri Indonesia. All rights reserved.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.
This template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.
Vegetative Difference Image gives an easy to interpret visual representation of vegetative increase/decrease across 2 time periods.This raster function template is used to generate a visual product. The results cannot be used for analysis. This templates generates an NDVI in the backend, hence it requires your imagery to have the red and near infrared bands. In the resulting image, greens indicate increase in vegetation, while the magenta indicates decrease in vegetationReferences:Raster functionsWhen to use this raster function templateThis template is particularly useful when trying to intuitively visualize the increase or decrease in vegetation over two time periods. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe template uses a standard vegetation which is designed to work globally.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com
Sometimes you just want to thread the needle of plausible cartography and make scientific maps in the most charming homespun manner possible.Here are a couple frame images if you want to add them atop your ArcGIS Pro layout:
This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Governor's Island Dataset for ArcGIS
This archive contains an ArcGIS Pro project with a geodatabase of raster and vector data for Governor's Island, New York City, USA. The SRS is NAD83 / New York Long Island (ftUS) with the EPSG code 2263.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
New Group Layer
Buildings are the foundation of any 3D city; they create a realistic visual context for understanding the built environment. This rule can help you quickly create 3D buildings using your existing 2D building footprint polygons. Create buildings for your whole city or specific areas of interest. Use the buildings for context surrounding higher-detail buildings or proposed future developments.Already have existing 3D buildings? Check out the Textured Buildings from Mass by Building Type rule.What you getA Rule Package file named Building_FromFootprint_Textured_ByLandUse.rpk Rule works with a polygon layerGet startedIn ArcGIS Pro Use this rule to create Procedural Symbols, which are 3D symbols drawn on 2D features Create 3D objects (Multipatch layer) for sharing on the webShare on the web via a Scene LayerIn CityEngine:CityEngine File Navigator HelpParametersBuilding Type: Eave_Height: Height from the ground to the eave, units controlled by the Units parameterFloor_Height: Height of each floor, units controlled by the Units parameterLand_Use: Use on the land and type of building, this helps in assigning appropriate building texturesRoof_Form: Style of the building roof (Gable, Hip, Flat, Green)Roof_Height: Height from the eave to the top of the roof, units controlled by the Units parameterDisplay:Color_Override: Setting this to True will allow you to define a specific color using the Override_Color parameter, and will disable photo-texturing.Override_Color: Allows you to specify a building color using the color palette. Note: you must change the Color_Override parameter from False to True for this parameter to take effect.Transparency: Sets the amount of transparency of the feature Units:Units: Controls the measurement units in the rule: Meters | FeetNote: You can hook up the rule parameters to attributes in your data by clicking on the database icon to the right of each rule parameter. The database icon will change to blue when the rule parameter is mapped to an attribute field. The rule will automatically connect when field names match rule parameter names. Use layer files to preserve rule configurations unique to your data.For those who want to know moreThis rule is part of a the 3D Rule Library available in the Living Atlas. Discover more 3D rules to help you perform your work.Learn more about ArcGIS Pro in the Getting to Know ArcGIS Pro lesson
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.
This style comprises 20 distinct hues, plus a white version, of the firefly symbol family for points, lines, and polygons.Points have two flavors of symbols. One is a standard radial opacity decay with a molten white core. The other is a variant with a shimmer effect, if that's what you need.Line symbols are available in solid or dashed. Lines are a stack of colorized semitransparent strokes beneath a white stroke, to create a glow effect.Polygons are also available in two versions. One version applies the glow to the perimeter of the polygon in both inner and outer directions, with a semi-transparent fill. This is effective for non-adjacent polygons. The alternate version only applies an inner glow, to prevent blending and overlapping of adjacent polygons.This is an early version of these symbols and only the points respond to color selection.Learn how to install this style by visiting this salacious blog post.Learn more about Firefly Cartography here.Happy Firefly Mapping! John