4 datasets found
  1. a

    SF Bay Eelgrass 250m Buffer (BCDC 2021)

    • data-bcdc.opendata.arcgis.com
    • data.cnra.ca.gov
    • +5more
    Updated Jun 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation & Development Commission (2021). SF Bay Eelgrass 250m Buffer (BCDC 2021) [Dataset]. https://data-bcdc.opendata.arcgis.com/datasets/sf-bay-eelgrass-250m-buffer-bcdc-2021
    Explore at:
    Dataset updated
    Jun 25, 2021
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Authors
    San Francisco Bay Conservation & Development Commission
    Area covered
    Description

    This orange layer shows a 250-meter turbidity buffer of the blue 45-meter growth buffer (blue layer called "SF Bay Eelgrass 45m Buffer") adjacent to the maximum extent eelgrass survey in the San Francisco Bay. When a dredging project’s footprint overlaps with this 250-meter buffer, indirect impacts to eelgrass are assessed and best management practices are required per the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation. Methods for creating this layer are as follows: Downloaded Bay-wide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from SFEI. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the 2003, 2009, 2014, and 2019 survey data . Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent (this represents the 45-meter eelgrass buffer layer also found in this Web Application). To create the 250-meter turbidity buffer from there, the same methods were used as follows. Used Buffer tool to develop a single multipart shapefile with a 250-meter buffer from the 45-meter buffer layer. Clipped the 250-meter turbidity buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the 250-meter turbidity buffer layer resulted in fragments on land or behind levees.

  2. d

    SF Bay Eelgrass 45m Buffer (BCDC 2020)

    • catalog.data.gov
    • data.cnra.ca.gov
    • +6more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2025). SF Bay Eelgrass 45m Buffer (BCDC 2020) [Dataset]. https://catalog.data.gov/dataset/sf-bay-eelgrass-45m-buffer-bcdc-2020-ef205
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Area covered
    San Francisco Bay
    Description

    This layer is a 45-meter growth buffer surrounding the maximum extent of eelgrass (green layer called "SF Bay Eelgrass") surveyed in San Francisco Bay. Eelgrass beds are highly dynamic and the exact location and extent of eelgrass beds can change across seasons and years. Thus, the purpose of the 45-meter growth buffer, as described in the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation is to account for areas between eelgrass patches, temporal variation in bed extent, and potential bed expansion. In cases where a dredge project intersects with the 45-meter growth buffer direct impacts to eelgrass may occur and therefore assessment, minimization, and mitigation measures may be required on a project-by-project basis. A pre-dredge eelgrass area and density survey is required 30 days prior to the start of dredging and should be submitted to the LTMS permitting agencies. Methods for creating this layer are as follows: Downloaded Baywide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from San Francisco Estuary Institute (SFEI) website. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the input layers. Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the buffer layer resulted in fragments on land or behind levees.

  3. n

    Effect of data source on estimates of regional bird richness in northeastern...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roi Ankori-Karlinsky; Ronen Kadmon; Michael Kalyuzhny; Katherine F. Barnes; Andrew M. Wilson; Curtis Flather; Rosalind Renfrew; Joan Walsh; Edna Guk (2021). Effect of data source on estimates of regional bird richness in northeastern United States [Dataset]. http://doi.org/10.5061/dryad.m905qfv0h
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    University of Michigan
    Massachusetts Audubon Society
    New York State Department of Environmental Conservation
    Gettysburg College
    University of Vermont
    Hebrew University of Jerusalem
    Agricultural Research Service
    Columbia University
    Authors
    Roi Ankori-Karlinsky; Ronen Kadmon; Michael Kalyuzhny; Katherine F. Barnes; Andrew M. Wilson; Curtis Flather; Rosalind Renfrew; Joan Walsh; Edna Guk
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Northeastern United States, United States
    Description

    Standardized data on large-scale and long-term patterns of species richness are critical for understanding the consequences of natural and anthropogenic changes in the environment. The North American Breeding Bird Survey (BBS) is one of the largest and most widely used sources of such data, but so far, little is known about the degree to which BBS data provide accurate estimates of regional richness. Here we test this question by comparing estimates of regional richness based on BBS data with spatially and temporally matched estimates based on state Breeding Bird Atlases (BBA). We expected that estimates based on BBA data would provide a more complete (and therefore, more accurate) representation of regional richness due to their larger number of observation units and higher sampling effort within the observation units. Our results were only partially consistent with these predictions: while estimates of regional richness based on BBA data were higher than those based on BBS data, estimates of local richness (number of species per observation unit) were higher in BBS data. The latter result is attributed to higher land-cover heterogeneity in BBS units and higher effectiveness of bird detection (more species are detected per unit time). Interestingly, estimates of regional richness based on BBA blocks were higher than those based on BBS data even when differences in the number of observation units were controlled for. Our analysis indicates that this difference was due to higher compositional turnover between BBA units, probably due to larger differences in habitat conditions between BBA units and a larger number of geographically restricted species. Our overall results indicate that estimates of regional richness based on BBS data suffer from incomplete detection of a large number of rare species, and that corrections of these estimates based on standard extrapolation techniques are not sufficient to remove this bias. Future applications of BBS data in ecology and conservation, and in particular, applications in which the representation of rare species is important (e.g., those focusing on biodiversity conservation), should be aware of this bias, and should integrate BBA data whenever possible.

    Methods Overview

    This is a compilation of second-generation breeding bird atlas data and corresponding breeding bird survey data. This contains presence-absence breeding bird observations in 5 U.S. states: MA, MI, NY, PA, VT, sampling effort per sampling unit, geographic location of sampling units, and environmental variables per sampling unit: elevation and elevation range from (from SRTM), mean annual precipitation & mean summer temperature (from PRISM), and NLCD 2006 land-use data.

    Each row contains all observations per sampling unit, with additional tables containing information on sampling effort impact on richness, a rareness table of species per dataset, and two summary tables for both bird diversity and environmental variables.

    The methods for compilation are contained in the supplementary information of the manuscript but also here:

    Bird data

    For BBA data, shapefiles for blocks and the data on species presences and sampling effort in blocks were received from the atlas coordinators. For BBS data, shapefiles for routes and raw species data were obtained from the Patuxent Wildlife Research Center (https://databasin.org/datasets/02fe0ebbb1b04111b0ba1579b89b7420 and https://www.pwrc.usgs.gov/BBS/RawData).

    Using ArcGIS Pro© 10.0, species observations were joined to respective BBS and BBA observation units shapefiles using the Join Table tool. For both BBA and BBS, a species was coded as either present (1) or absent (0). Presence in a sampling unit was based on codes 2, 3, or 4 in the original volunteer birding checklist codes (possible breeder, probable breeder, and confirmed breeder, respectively), and absence was based on codes 0 or 1 (not observed and observed but not likely breeding). Spelling inconsistencies of species names between BBA and BBS datasets were fixed. Species that needed spelling fixes included Brewer’s Blackbird, Cooper’s Hawk, Henslow’s Sparrow, Kirtland’s Warbler, LeConte’s Sparrow, Lincoln’s Sparrow, Swainson’s Thrush, Wilson’s Snipe, and Wilson’s Warbler. In addition, naming conventions were matched between BBS and BBA data. The Alder and Willow Flycatchers were lumped into Traill’s Flycatcher and regional races were lumped into a single species column: Dark-eyed Junco regional types were lumped together into one Dark-eyed Junco, Yellow-shafted Flicker was lumped into Northern Flicker, Saltmarsh Sparrow and the Saltmarsh Sharp-tailed Sparrow were lumped into Saltmarsh Sparrow, and the Yellow-rumped Myrtle Warbler was lumped into Myrtle Warbler (currently named Yellow-rumped Warbler). Three hybrid species were removed: Brewster's and Lawrence's Warblers and the Mallard x Black Duck hybrid. Established “exotic” species were included in the analysis since we were concerned only with detection of richness and not of specific species.

    The resultant species tables with sampling effort were pivoted horizontally so that every row was a sampling unit and each species observation was a column. This was done for each state using R version 3.6.2 (R© 2019, The R Foundation for Statistical Computing Platform) and all state tables were merged to yield one BBA and one BBS dataset. Following the joining of environmental variables to these datasets (see below), BBS and BBA data were joined using rbind.data.frame in R© to yield a final dataset with all species observations and environmental variables for each observation unit.

    Environmental data

    Using ArcGIS Pro© 10.0, all environmental raster layers, BBA and BBS shapefiles, and the species observations were integrated in a common coordinate system (North_America Equidistant_Conic) using the Project tool. For BBS routes, 400m buffers were drawn around each route using the Buffer tool. The observation unit shapefiles for all states were merged (separately for BBA blocks and BBS routes and 400m buffers) using the Merge tool to create a study-wide shapefile for each data source. Whether or not a BBA block was adjacent to a BBS route was determined using the Intersect tool based on a radius of 30m around the route buffer (to fit the NLCD map resolution). Area and length of the BBS route inside the proximate BBA block were also calculated. Mean values for annual precipitation and summer temperature, and mean and range for elevation, were extracted for every BBA block and 400m buffer BBS route using Zonal Statistics as Table tool. The area of each land-cover type in each observation unit (BBA block and BBS buffer) was calculated from the NLCD layer using the Zonal Histogram tool.

  4. a

    Urban Park Size (Southeast Blueprint Indicator)

    • hub.arcgis.com
    • secas-fws.hub.arcgis.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). Urban Park Size (Southeast Blueprint Indicator) [Dataset]. https://hub.arcgis.com/content/fws::urban-park-size-southeast-blueprint-indicator-2024/about?uiVersion=content-views
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
San Francisco Bay Conservation & Development Commission (2021). SF Bay Eelgrass 250m Buffer (BCDC 2021) [Dataset]. https://data-bcdc.opendata.arcgis.com/datasets/sf-bay-eelgrass-250m-buffer-bcdc-2021

SF Bay Eelgrass 250m Buffer (BCDC 2021)

Explore at:
Dataset updated
Jun 25, 2021
Dataset provided by
San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
Authors
San Francisco Bay Conservation & Development Commission
Area covered
Description

This orange layer shows a 250-meter turbidity buffer of the blue 45-meter growth buffer (blue layer called "SF Bay Eelgrass 45m Buffer") adjacent to the maximum extent eelgrass survey in the San Francisco Bay. When a dredging project’s footprint overlaps with this 250-meter buffer, indirect impacts to eelgrass are assessed and best management practices are required per the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation. Methods for creating this layer are as follows: Downloaded Bay-wide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from SFEI. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the 2003, 2009, 2014, and 2019 survey data . Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent (this represents the 45-meter eelgrass buffer layer also found in this Web Application). To create the 250-meter turbidity buffer from there, the same methods were used as follows. Used Buffer tool to develop a single multipart shapefile with a 250-meter buffer from the 45-meter buffer layer. Clipped the 250-meter turbidity buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the 250-meter turbidity buffer layer resulted in fragments on land or behind levees.

Search
Clear search
Close search
Google apps
Main menu