Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification.
The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively.
After completing this seminar you will be able to:
USA Cropland is a time-enabled imagery layer of the USDA Cropland Data Layer dataset from the National Agricultural Statistics Service (NASS). The time series shows the crop grown during every growing season in the conterminous US since 2008. Use the time slider to select only one year to view or analyze. Press play to see each growing season displayed sequentially in an animated map. The USDA is now serving the Cropland Data Layer in their own application called CroplandCros which allows selection and display of a single product or growing season. This application will eventually replace their popular CropScape application. Dataset SummaryVariable mapped: Crop grown in each pixel since 2008.Data Projection: AlbersMosaic Projection: AlbersExtent: Conterminous USACell Size: 30m in 2008-2023, 10m in 2024Source Type: ThematicVisible Scale: All scales are visibleSource: USDA NASSPublication Date: 2/26/2025 Why USA Cropland living atlas layer masks out NLCD land cover in its default templateUSDA Cropland Data Layer, by default as downloaded from USDA, fills in the non-cultivated areas of the conterminous USA with land cover classes from the MRLC National Land Cover Dataset (NLCD). The default behavior for Esri"s USA Cropland layer is a little bit different. By default the Esri USA Cropland layer uses the analytic renderer, which masks out this NLCD data. Why did we choose to mask out the NLCD land cover classes by default? While crops are updated every year from USDA NASS, the NLCD data changes every several years, and it can be quite a bit older than the crop data beside it. If analysis is conducted to quantify landscape change, the NLCD-derived pixels will skew the results of the analysis because NLCD land cover in a yearly time series may appear to remain the same class for several years in a row. This can be problematic because conclusions drawn from this dataset may underrepresent the amount of change happening to the landscape. To display the most current land cover available from both sources, add both the USA NLCD Land Cover service and USA Cropland time series to your map. Use the analytical template with the USA Cropland service, and draw it on top of the USA NLCD Land Cover service. When a time slider is used with these datasets together, the map user will see the most current land cover from both services in any given year. This layer and the data making up the layer are in the Albers map projection. Albers is an equal area projection, and this allows users of this layer to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into web Mercator, if that is the destination projection of the layer. Processing templates available with this layerTo help filter out and display just the crops and land use categories you are interested in showing, choose one of the thirteen processing templates that will help you tailor the symbols in the time series to suit your map application. The following are the processing templates that are available with this layer: Analytic RendererUSDA Analytic RendererThe analytic renderer is the default template. NLCD codes are masked when using analytic renderer processing templates. There is a default esri analytic renderer, but also an analytic renderer that uses the original USDA color scheme that was developed for the CropScape layers. This is useful if you have already built maps with the USDA color scheme or otherwise prefer the USDA color scheme. Cartographic RendererUSDA Cartographic RendererThese templates fill in with NLCD land cover types where crops are not cultivated, thereby filling the map with color from coast to coast. There is also a template using the USDA color scheme, which is identical to the datasets as downloaded from USDA NASS. In addition to different ways to display the whole dataset, some processing templates are included which help display the top agricultural products in the United States. If these templates seem to include too many crops in their category (for example, tomatoes are included in both the fruit and vegetables templates), this is because it"s easier for a map user to remove a symbol from a template than it is to add one. Corn - Corn, sweet corn, popcorn or ornamental corn, plus double crops with corn and another crop.Cotton - Cotton and double crops, includes double crops with cotton and another crop.Fruit - Symbolized fruit crops include not only things like melons, apricots, and strawberries, but also olives, avocados, and tomatoes.Nuts - Peanuts, tree nuts, sunflower, etc.Oil Crops - Oil crops include rapeseed and canola, soybeans, avocado, peanut, corn, safflower, sunflower, also cotton and grapes.Permanent Crops - Crops that do not need to be replanted after harvest. Includes fruit and nut trees, caneberries, and grapes.Rice - Rice crops.Sugar - Crops grown to make sugars. Sugar beets and cane are displayed of course, but so are corn and grapes.Soybeans - Soybean crops. Includes double crops where soybeans are grown at some time during the growing season.Vegetables - Vegetable crops, and yes this includes tomatoes.Wheat - Winter and spring wheat, durum wheat, triticale, spelt, and wheat double crops. In many places, two crops were grown in one growing season. Keep in mind that a double crop of corn and soybeans will display in both the corn and soybeans processing templates. What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "USA Cropland" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "USA Cropland" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Index to raster values in USA Cropland:Value,Crop0,Background (not a cultivated crop or no data)1,Corn2,Cotton3,Rice4,Sorghum5,Soybeans6,Sunflower10,Peanuts11,Tobacco12,Sweet Corn13,Popcorn or Ornamental Corn14,Mint21,Barley22,Durum Wheat23,Spring Wheat24,Winter Wheat25,Other Small Grains26,Double Crop Winter Wheat/Soybeans27,Rye28,Oats29,Millet30,Speltz31,Canola32,Flaxseed33,Safflower34,Rape Seed35,Mustard36,Alfalfa37,Other Hay/Non Alfalfa38,Camelina39,Buckwheat41,Sugarbeets42,Dry Beans43,Potatoes44,Other Crops45,Sugarcane46,Sweet Potatoes47,Miscellaneous Vegetables and Fruits48,Watermelons49,Onions50,Cucumbers51,Chick Peas52,Lentils53,Peas54,Tomatoes55,Caneberries56,Hops57,Herbs58,Clover/Wildflowers59,Sod/Grass Seed60,Switchgrass61,Fallow/Idle Cropland62,Pasture/Grass63,Forest64,Shrubland65,Barren66,Cherries67,Peaches68,Apples69,Grapes70,Christmas Trees71,Other Tree Crops72,Citrus74,Pecans75,Almonds76,Walnuts77,Pears81,Clouds/No Data82,Developed83,Water87,Wetlands88,Nonagricultural/Undefined92,Aquaculture111,Open Water112,Perennial Ice/Snow121,Developed/Open Space122,Developed/Low Intensity123,Developed/Med Intensity124,Developed/High Intensity131,Barren141,Deciduous Forest142,Evergreen Forest143,Mixed Forest152,Shrubland176,Grassland/Pasture190,Woody Wetlands195,Herbaceous Wetlands204,Pistachios205,Triticale206,Carrots207,Asparagus208,Garlic209,Cantaloupes210,Prunes211,Olives212,Oranges213,Honeydew Melons214,Broccoli215,Avocados216,Peppers217,Pomegranates218,Nectarines219,Greens220,Plums221,Strawberries222,Squash223,Apricots224,Vetch225,Double Crop Winter Wheat/Corn226,Double Crop Oats/Corn227,Lettuce228,Double Crop Triticale/Corn229,Pumpkins230,Double Crop Lettuce/Durum Wheat231,Double Crop Lettuce/Cantaloupe232,Double Crop Lettuce/Cotton233,Double Crop Lettuce/Barley234,Double Crop Durum Wheat/Sorghum235,Double Crop Barley/Sorghum236,Double Crop Winter Wheat/Sorghum237,Double Crop Barley/Corn238,Double Crop Winter Wheat/Cotton239,Double Crop Soybeans/Cotton240,Double Crop Soybeans/Oats241,Double Crop Corn/Soybeans242,Blueberries243,Cabbage244,Cauliflower245,Celery246,Radishes247,Turnips248,Eggplants249,Gourds250,Cranberries254,Double Crop Barley/Soybeans Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif
.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson