This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
Three feature layers of Unites States internal state boundaries at different scales: 1:500K, 1:5M, and 1:20M. These layers are intended for use as a cartographic product. It is up to the user to determine which layer is most appropriate for their map.Derived from 2019 US Census Bureau Cartographic Boundary Files for state boundaries using ArcGIS Pro 2.4.3. Process:Original files were downloaded from US Census for the three different scales.Polygons were then converted to lines using the Polygon-to-Line tool.To remove the coastlines, all rows not having a LEFT_FID or RIGHT_FID attribute equal to -1 were then exported to a new geodatabase feature class.The geodatabase was zipped and uploaded to ArcGIS Online.For more information on Cartographic Boundary Files visit https://www.census.gov/programs-surveys/geography/technical-documentation/naming-convention/cartographic-boundary-file.html and https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html.Created by Ryan Davis (RDavis9@cdc.gov) on behalf of CDC/ATSDR/DTHHS/GRASP.
Three feature layers of Unites States internal state boundaries at different scales: 1:500K, 1:5M, and 1:20M. These layers are intended for use as a cartographic product. It is up to the user to determine which layer is most appropriate for their map.Derived from 2019 US Census Bureau Cartographic Boundary Files for state boundaries using ArcGIS Pro 2.4.3. Process:Original files were downloaded from US Census for the three different scales.Polygons were then converted to lines using the Polygon-to-Line tool.To remove the coastlines, all rows not having a LEFT_FID or RIGHT_FID attribute equal to -1 were then exported to a new geodatabase feature class.The geodatabase was zipped and uploaded to ArcGIS Online.For more information on Cartographic Boundary Files visit https://www.census.gov/programs-surveys/geography/technical-documentation/naming-convention/cartographic-boundary-file.html and https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html.Created by Ryan Davis (RDavis9@cdc.gov) on behalf of CDC/ATSDR/DTHHS/GRASP.
Purpose:This feature layer describes the boundaries of Proposed Critical Habitat for the Rusty Patched Bumble Bee in Virginia and West Virginia.Source & Date:Data was downloaded from Regulations.gov, Document FWS-R3-ES-2024-0132-0016: CORRECTED_Rusty Patched Bumble Bee Critical Habitat Plot Points. Posted by the Fish and Wildlife Service on Dec 6, 2024 and accessible here as of 1/16/2025.Processing:The data was downloaded as a list of Latitude and Longitude coordinates in a PDF document. The PPDF was converted to Microsoft Excel format using Nitro Pro PDF editor. Data was cleaned of extra tabs, spaces, etc., given an OBJECTID field and saved as a comma-separated values (CSV) text file. The CSV file was loaded into ArcGIS Pro and converted to a point feature class using Latitude and Longitude as Y & X coordinates, respectively. The point featureclass was converted to polyline using the Points to Line script in Data management Tools - Features tool set. The polyline feature was converted to Polygon using Feature to Polygon (again in Features tool set). Fields for Square Miles (SqMi) and Acres were added and calculated with Calculate Geometry. The polygon feature class was exported to shapefile, zipped and uploaded to ArcGIS Online, where it was published as a feature layer.Symbology:Varies - default is medium blue polygon with dark gray outline.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Spatial data layers of stream crossing point locations, cross-section polyline, centerline polyline, and bank polyline shapefiles have been developed for selected stream crossings in the Squannacook River basin, Massachusetts. The spatial data and calculated attribute values are model input data for U.S. Army Corps of Engineer’s Hydrologic Engineering Center’s River Analysis System (HEC-RAS) hydraulic models. The stream crossing point locations were derived from the North Atlantic Aquatic Connectivity Collaboration (NAACC) database. The stream channel cross-sections, centerlines, and bank polylines were derived using automated methods in a Geographic Information System (GIS) using ArcGIS Pro and Python programming language. The polyline shapefiles are Z-enabled and have elevation data derived from Light Detection and Ranging (lidar) Digital Elevation Models (DEM) for Z-coordinate vertex values in units of feet. The polyline shapefiles are also M-enabled and have profile stationing ...
The polyline dataset currently represents 7 approach trails at Devils Tower National Monument. It was created in ArcGIS Pro Scene 3.1, using an integrated approach combining literature review and collaboration with technical climbing staff. Approaches were heads-up digitized over a 3D model of Devils Tower with derived triangulated irregular network (TIN) surfaces created from the DETO Unmanned Aircraft Systems (UAV) Digital Elevation Model (DEM). This dataset utilizes the updated NPS Core Spatial Data Standard Implementation Plan Template dated August 31, 2016. Description last updated January 2020.
Defra Network WMS server provided by the Environment Agency. See full dataset here.The Most Probable Overland Flow Pathway dataset is a polyline GIS vector dataset that describes the likely flow routes of water along with potential accumulations of diffuse pollution and soil erosion features over the land.It is a complete network for the entire country (England) produced from a hydro-enforced LIDAR 1-metre resolution digital terrain model (bare earth DTM) produced from the 2022 LIDAR Composite 1m Digital Terrain Model. Extensive processing on the data using auxiliary datasets (Selected OS Water Network, OS MasterMap features as well as some manual intervention) has resulted in a hydro-enforced DTM that significantly reduces the amount of non-real-world obstructions in the DTM. Although it does not consider infiltration potential of different land surfaces and soil types, it is instructive in broadly identifying potential problem areas in the landscape.The flow network is based upon theoretical one-hectare flow accumulations, meaning that any point along a network feature is likely to have a minimum of one-hectare of land potentially contributing to it. Each segment is attributed with an estimate of the mean slope along it.The product is comprised of 3 vector datasets; Probable Overland Flow Pathways, Detailed Watershed and Ponding and Errors. Where Flow Direction Grids have been derived, the D8 option was applied. All processing was carried out using ARCGIS Pro’s Spatial Analyst Hydrology tools. Outlined below is a description of each of the feature class.Probable Overland Flow Pathways The Probable Overland Flow Pathways layer is a polyline vector dataset that describes the probable locations accumulation of water over the Earth’s surface where it is assumed that there is no absorption of water through the soil. Every point along each of the features predicts an uphill contribution of a minimum of 1 hectare of land. The hydro-enforced LIDAR Digital Terrain Model 1-Metre Composite (2022) has been used to derive this data layer. Every effort has been used to digitally unblock real-world drainage features; however, some blockages remain (e.g. culverts and bridges. In these places the flow pathways should be disregarded. The Ponding field can be used to identify these erroneous pathways. They are flagged in the Ponding field with a “1”. Flow pathways are also attributed with a mean slope value which is calculated from the Length and the difference of the start and end point elevations. The maximum uphill flow accumulation area is also indicated for each flow pathway feature.Detailed Watersheds The Detailed Watersheds layer is a polygon vector dataset that describes theoretical catchment boundaries that have been derived from pour points extracted from every junction or node of a 1km2 Flow Accumulation dataset. The hydro-enforced LIDAR Digital Terrain Model 1-Metre Composite (2022) has been used to derive this data layer.Ponding Errors The Ponding and Errors layer is a polygon vector dataset that describes the presence of depressions in the landscape after the hydro-enforcing routine has been applied to the Digital Terrain Model. The Type field indicates whether the feature is Off-Line or On-Line. Off-Line is indicative of a feature that intersects with a watercourse and is likely to be an error in the Overland Flow pathways. On-line features do not intersect with watercourses and are more likely to be depressions in the landscape where standing water may accumulate. Only features of greater than 100m2 with a depth of greater than 20cm have been included. The layer was derived by filling the hydro-enforced DTM then subtracting the hydro-enforced DTM from the filled hydro-enforced DTM.Please use with caution in very flat areas and areas with highly modified drainage systems (e.g. fenlands of East Anglia and Somerset Levels). There will occasionally be errors associated with bridges, viaducts and culverts that were unable to be resolved with the hydro-enforcement process.
In the Prince William Sound region of Alaska, recent glacier retreat started in the mid-1800s and began to accelerate in the mid-2000s in response to warming air temperatures (Maraldo and others, 2020). Prince William Sound is surrounded by the central Chugach Mountains and consists of numerous ocean-terminating glaciers, with rapid deglaciation increasingly exposing oversteepened bedrock walls of fiords. Deglaciation may accelerate the occurrence of rapidly moving rock avalanches (RAs), which have the potential to generate tsunamis and adversely impact maritime vessels, marine activities, and coastal infrastructure and populations in the Prince William Sound region. RAs have been documented in the Chugach Mountains in the past (Post, 1967; McSaveney, 1978; Uhlmann and others, 2013), but a time series of RAs in the Chugach Mountains is not currently available. A systematic inventory of RAs in the Chugach is needed as a baseline to evaluate any future changes in RA frequency, magnitude, and mobility. This data release presents a comprehensive historical inventory of RAs in a 4600 km2 area of the Prince William Sound. The inventory was generated from: (1) visual inspection of 30-m resolution Landsat satellite images collected between July 1984 and August 2024; and (2) the use of an automated image classification script (Google earth Engine supRaglAciaL Debris INput dEtector (GERALDINE, Smith and others, 2020)) designed to detect new rock-on-snow events from repeat Landsat images from the same time period. RAs were visually identified and mapped in a Geographic Information System (GIS) from the near-infrared (NIR) band of Landsat satellite images. This band provides significant contrast between rock and snow to detect newly deposited rock debris. A total of 252 Landsat images were visually examined, with more images available in recent years compared to earlier years (Figure 1). Calendar year 1984 was the first year when 30-m resolution Landsat data were available, and thus provided a historical starting point from which RAs could be detected with consistent certainty. By 2017, higher resolution (<5-m) daily Planet satellite images became consistently available and were used to better constrain RA timing and extent. Figure 1. Diagram showing the number of usable Landsat images per year. This inventory reveals 118 RAs ranging in size from 0.1 km2 to 2.3 km2. All of these RAs occurred during the months of May through September (Figure 2). The data release includes three GIS feature classes (polygons, points, and polylines), each with its own attribute information. The polygon feature class contains the entire extent of individual RAs and does not differentiate the source and deposit areas. The point feature class contains headscarp and toe locations, and the polyline feature class contains curvilinear RA travel distance lines that connect the headscarp and toe points. Additional attribute information includes the following: _location of headscarp and toe points, date of earliest identified occurrence, if and when the RA was sequestered into the glacier, presence and delineation confidence levels (see Table 1 for definition of A, B, and C confidence levels), identification method (visual inspection versus automated detection), image platform, satellite, estimated cloud cover, if the RA is lobate, image ID, image year, image band, affected area in km2, length, height, length/height, height/length, notes, minimum and maximum elevation, aspect at the headscarp point, slope at the headscarp point, and geology at the headscarp point. Topographic information was derived from 5-m interferometric synthetic aperture radar (IfSAR) Digital Elevation Models (DEMs) that were downloaded from the USGS National Elevation Dataset website (U.S. Geological Survey, 2015) and were mosaicked together in ArcGIS Pro. The aspect and slope layers were generated from the downloaded 5-m DEM with the “Aspect” and “Slope” tools in ArcGIS Pro. Aspect and slope at the headscarp mid-point were then recorded in the attribute table. A shapefile of Alaska state geology was downloaded from Wilson and others (2015) and was used to determine the geology at the headscarp _location. The 118 identified RAs have the following confidence level breakdown for presence: 66 are A-level, 51 are B-level, and 1 is C-level. The 118 identified RAs have the following confidence level breakdown for delineation: 39 are A-level and 79 are B-level. Please see the provided attribute table spreadsheet for more detailed information. Figure 2. Diagram showing seasonal timing of mapped rock avalanches. Table 1. Rock avalanche presence and delineation confidence levels Category Grade Justification Presence A Feature is clearly visible in one or more satellite images. B Feature is clearly visible in one or more satellite images but has low contrast with the surroundings and may be surficial debris from rock fall, rather than from a rock avalanche. C Feature presence is possible but uncertain due to poor quality of imagery (e.g., heavy cloud cover or shadows) or lack of multiple views. Delineation A Exact outline of the feature from headscarp to toe is clear. B General shape of the feature is clear but the exact headscarp or toe _location is unclear (e.g., due to clouds or shadows). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. References Maraldo, D.R., 2020, Accelerated retreat of coastal glaciers in the Western Prince William Sound, Alaska: Arctic, Antarctic, and Alpine Research, v. 52, p. 617-634, https://doi.org/10.1080/15230430.2020.1837715 McSaveney, M.J., 1978, Sherman glacier rock avalanche, Alaska, U.S.A. in Voight, B., ed., Rockslides and Avalanches, Developments in Geotechnical Engineering, Amsterdam, Elsevier, v. 14, p. 197–258. Post, A., 1967, Effects of the March 1964 Alaska earthquake on glaciers: U.S. Geological Survey Professional Paper 544-D, Reston, Virgina, p. 42, https://pubs.usgs.gov/pp/0544d/ Smith, W. D., Dunning, S. A., Brough, S., Ross, N., and Telling, J., 2020, GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): A new tool for identifying and monitoring supraglacial landslide inputs: Earth Surface Dynamics, v. 8, p. 1053-1065, https://doi.org/10.5194/esurf-8-1053-2020 Uhlmann, M., Korup, O., Huggel, C., Fischer, L., and Kargel, J. S., 2013, Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska: Earth Surface Processes and Landforms, v. 38, p. 675–682, https://doi.org/10.1002/esp.3311 U.S. Geological Survey, 2015, USGS NED Digital Surface Model AK IFSAR-Cell37 2010 TIFF 2015: U.S. Geological Survey, https://elevation.alaska.gov/#60.67183:-147.68372:8 Wilson, F.H., Hults, C.P., Mull, C.G, and Karl, S.M, compilers, 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet p. 196, 2 sheets, scale 1:1,584,000, https://pubs.usgs.gov/publication/sim3340
The polyline dataset currently represents 5 rappel routes at Devils Tower National Monument. It was created in ArcGIS Pro Scene 3.1, using an integrated approach combining literature review and collaboration with technical climbing staff. Routes were heads-up digitized over a 3D model of Devils Tower with derived triangulated irregular network (TIN) surfaces created from the DETO Unmanned Aircraft Systems (UAV) Digital Elevation Model (DEM). This dataset utilizes the updated NPS Core Spatial Data Standard Implementation Plan Template dated August 31, 2016. Description last updated January 2020.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.