24 datasets found
  1. Felt style for ArcGIS Pro

    • hub.arcgis.com
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2019). Felt style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/f25e23a34ba245c98a3791e0a661f19b
    Explore at:
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    I'd like you to make downloading, implementing, and sharing the output of, this felt-tastic style your new highest priority.So what do you get when you download this style, besides a rush of craft-induced adrenaline? These symbols...I've seeded the style with some pre-colored symbols but each and every one of these felty symbols can be dyed whatever color you want in the symbology panel. Here are some example maps using this style...Happy Mapping! John Nelson

  2. a

    ArcGIS Pro: Mapping and Visualization

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Pro: Mapping and Visualization [Dataset]. https://hub.arcgis.com/documents/delaware::arcgis-pro-mapping-and-visualization/about?path=
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Discover how to display and symbolize both 2D and 3D data. Search, access, and create new map symbols. Learn to specify and configure text symbols for your map. Complete your map by creating an effective layout to display and distribute your work.

  3. f

    Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of...

    • uvaauas.figshare.com
    txt
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of visualizing geomorphological codes using predefined color palettes [Dataset]. http://doi.org/10.21942/uva.13704643
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.

  4. National Park Service Official Style

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Oct 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2021). National Park Service Official Style [Dataset]. https://hub.arcgis.com/content/31b357c26700467792cfb5f7778d72ea
    Explore at:
    Dataset updated
    Oct 9, 2021
    Dataset authored and provided by
    National Park Servicehttp://www.nps.gov/
    Description

    Official style (.stylx) for ArcGIS Pro created by the National Park Service The original National Park Service style file was an attempt to create an easy way for users to style their cartographic products in ArcGIS ArcMap in a way that resembles an official NPS, Harpers Ferry Center (HFC) product. It has been updated for use in ArcGIS Pro by the GISC Cartography & Web Mapping Subcommittee, who addressed changes and additions to HFC cartography, but also longstanding issues with the style itself.How-to add styles to a ArcGIS Pro projectIRMA Reference Update Oct 2, 2021:Fixes the National Park Service North Arrow Adds HFC-styled scale bars.

  5. Imhof style for ArcGIS Pro

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Aug 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Imhof style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/1f25b31793cd4e7391b0cd51b9b79783
    Explore at:
    Dataset updated
    Aug 28, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson

  6. Joint Military Symbology MIL-STD-2525D

    • hub.arcgis.com
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Joint Military Symbology MIL-STD-2525D [Dataset]. https://hub.arcgis.com/content/4cb91e6466444c55a8159258d42a95a2
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    An ArcGIS Mobile style (stylx) file for use with ArcGIS Pro 2.9+ and ArcGIS Runtime 100.13+ to build custom applications that incorporate the MIL-STD-2525D symbol dictionary. This style supports a configuration for modeling locations as ordered anchor points or full geometries.Required Software:ArcGIS Pro 2.9 or higherArcGIS Runtime 100.13 or higherThe style can be published from ArcGIS Pro as a web style for use with the ArcGIS API for JavaScript 4.22 or higher.

  7. Textured Buildings from Footprint by Land Use

    • africageoportal.com
    • hub.arcgis.com
    • +1more
    Updated Jun 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Textured Buildings from Footprint by Land Use [Dataset]. https://www.africageoportal.com/content/7b8c9c8e74e24485ad17fafa8754fbe3
    Explore at:
    Dataset updated
    Jun 24, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Buildings are the foundation of any 3D city; they create a realistic visual context for understanding the built environment. This rule can help you quickly create 3D buildings using your existing 2D building footprint polygons. Create buildings for your whole city or specific areas of interest. Use the buildings for context surrounding higher-detail buildings or proposed future developments.Already have existing 3D buildings? Check out the Textured Buildings from Mass by Building Type rule.What you getA Rule Package file named Building_FromFootprint_Textured_ByLandUse.rpk Rule works with a polygon layerGet startedIn ArcGIS Pro Use this rule to create Procedural Symbols, which are 3D symbols drawn on 2D features Create 3D objects (Multipatch layer) for sharing on the webShare on the web via a Scene LayerIn CityEngine:CityEngine File Navigator HelpParametersBuilding Type: Eave_Height: Height from the ground to the eave, units controlled by the Units parameterFloor_Height: Height of each floor, units controlled by the Units parameterLand_Use: Use on the land and type of building, this helps in assigning appropriate building texturesRoof_Form: Style of the building roof (Gable, Hip, Flat, Green)Roof_Height: Height from the eave to the top of the roof, units controlled by the Units parameterDisplay:Color_Override: Setting this to True will allow you to define a specific color using the Override_Color parameter, and will disable photo-texturing.Override_Color: Allows you to specify a building color using the color palette. Note: you must change the Color_Override parameter from False to True for this parameter to take effect.Transparency: Sets the amount of transparency of the feature Units:Units: Controls the measurement units in the rule: Meters | FeetNote: You can hook up the rule parameters to attributes in your data by clicking on the database icon to the right of each rule parameter. The database icon will change to blue when the rule parameter is mapped to an attribute field. The rule will automatically connect when field names match rule parameter names. Use layer files to preserve rule configurations unique to your data.For those who want to know moreThis rule is part of a the 3D Rule Library available in the Living Atlas. Discover more 3D rules to help you perform your work.Learn more about ArcGIS Pro in the Getting to Know ArcGIS Pro lesson

  8. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • digital-earth-pacificcore.hub.arcgis.com
    • pacificgeoportal.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  9. a

    3D People ArcGIS Pro Style

    • hub.arcgis.com
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). 3D People ArcGIS Pro Style [Dataset]. https://hub.arcgis.com/content/5d79e5ace56d4aaaba1dbf9176b5effc
    Explore at:
    Dataset updated
    Jun 7, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    A style containing 34 assorted 3D people models for use in large-scale visualizations, providing vertical context.To Match Layer Symbology to Style in ArcGIS Pro, populate a person_type text field to match the values shown below. Next, copy these values to a table, then join the height value(s) to the people points for use in pop-ups or charts. person_type name height_m height_feet height_inches

    Man 1 Gerald 1.7899 5 10.47

    Man 2 Ethan 1.8879 6 2.33

    Man 3 Cliff 1.7015 5 6.99

    Man 4 Dustin 1.7965 5 10.73

    Man 5 Jorge 1.8787 6 1.96

    Man 6 Phillip 1.6752 5 5.95

    Man 7 Dmitri 1.71 5 7.32

    Man 8 Luke 1.793 5 10.59

    Man 9 Carlos 1.7028 5 7.04

    Man 10 Jimmy 1.7625 5 9.39

    Man 11 Helmut 1.8331 6 0.17

    Man 12 Guy 1.812 5 11.34

    Man 13 Leon 1.8219 5 11.73

    Man 14 Matthias 1.753 5 9.02

    Man 15 Kendrick 1.8787 6 1.96

    Man 16 Seth 1.8272 5 11.94

    Man 17 Gomer 1.8982 6 2.73

    Man 18 Robert 1.7853 5 10.29

    Man 19 Jack 1.779 5 10.04

    Man 20 Andy 1.8794 6 1.99

    Man 21 Hamish 1.67 5 5.75

    Man 22 Felix 1.86 6 1.23

    Man 23 Adrian 1.75 5 8.90

    Woman 1 Greta 1.5371 5 0.52

    Woman 2 Simone 1.6366 5 4.43

    Woman 3 Alison 1.679 5 6.10

    Woman 4 Felicia 1.7433 5 8.63

    Woman 5 Jessica 1.7322 5 8.20

    Woman 6 Claire 1.6405 5 4.59

    Woman 7 Maude 1.7795 5 10.06

    Woman 8 Jenny 1.659 5 5.31

    Woman 9 Diane 1.67 5 5.75

    Woman 10 Carla 1.75 5 8.90

    Woman 11 Lauren 1.69 5 6.54

  10. a

    Textured Buildings from Footprint by Building Type

    • hub.arcgis.com
    Updated Jun 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Textured Buildings from Footprint by Building Type [Dataset]. https://hub.arcgis.com/datasets/dc9ce364e18442debd7cf54ee4439067
    Explore at:
    Dataset updated
    Jun 24, 2016
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Buildings are the foundation of any 3D city; they create a realistic visual context for understanding the built environment. This rule can help you quickly create 3D buildings using your existing 2D building footprint polygons. Create buildings for your whole city or specific areas of interest. Use the buildings for context surrounding higher-detail buildings or proposed future developments. Already have existing 3D buildings? Check out the Textured Buildings from Mass by Building Type rule.What you getA Rule Package file named Building_FromFootprint_Textured_ByBuildingType.rpk Rule works with a polygon layerGet startedIn ArcGIS Pro Use this rule to create Procedural Symbols, which are 3D symbols drawn on 2D features Create 3D objects (Multipatch layer) for sharing on the webShare on the web via a Scene LayerIn CityEngineCityEngine File Navigator HelpParametersBuilding Type: Eave_Height: Height from the ground to the eave, units controlled by the Units parameterFloor_Height: Height of each floor, units controlled by the Units parameterRoof_Form: Style of the building roof (Gable, Hip, Flat, Green)Roof_Height: Height from the eave to the top of the roof, units controlled by the Units parameterType: Use activity within the building, this helps in assigning appropriate building texturesDisplay:Color_Override: Setting this to True will allow you to define a specific color using the Override_Color parameter, and will disable photo-texturing.Override_Color: Allows you to specify a building color using the color palette. Note: you must change the Color_Override parameter from False to True for this parameter to take effect.Transparency: Sets the amount of transparency of the feature Units:Units: Controls the measurement units in the rule: Meters | FeetImportant Note: You can hook up the rule parameters to attributes in your data by clicking on the database icon to the right of each rule parameter. The database icon will change to blue when the rule parameter is mapped to an attribute field. The rule will automatically connect when field names match rule parameter names. Use layer files to preserve rule configurations unique to your data.For those who want to know moreThis rule is part of a the 3D Rule Library available in the Living Atlas. Discover more 3D rules to help you perform your work.Learn more about ArcGIS Pro in the Getting to Know ArcGIS Pro lesson

  11. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  12. a

    Labeling Map Features

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Labeling Map Features [Dataset]. https://hub.arcgis.com/documents/delaware::labeling-map-features/about
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    Label placement and properties for identifying features are as important as the symbols that you use to represent the features. Like symbols, labels are included in both basemap and operational map layers. This course will show you how to add and customize labels for your maps.Goals Use ArcGIS Pro to label features in a map.

  13. a

    Highway Symbol Markers

    • data-yavgis.opendata.arcgis.com
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yavapai County ArcGIS Organization (2024). Highway Symbol Markers [Dataset]. https://data-yavgis.opendata.arcgis.com/datasets/YavGIS::transit-features?layer=0
    Explore at:
    Dataset updated
    Mar 7, 2024
    Dataset authored and provided by
    Yavapai County ArcGIS Organization
    Area covered
    Description

    Intended for searching and web map display in Portal web maps and web applications or in ArcGIS Pro. Source of feature class that published this web service is from enterprise geodatabase. Key words are standardized for ArcGIS Pro users to be able to search through the County's Geo Portal web services without being logged in.

  14. a

    Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • hub.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • +1more
    Updated May 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://hub.arcgis.com/maps/c6d64a3ac69e4c0c80fdfa011f08d0e2
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  15. a

    Symbolize Your Data

    • hub.arcgis.com
    Updated Jan 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Symbolize Your Data [Dataset]. https://hub.arcgis.com/documents/3ad6882c044042cab13f206907994c92
    Explore at:
    Dataset updated
    Jan 17, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    For example, in a layer of cities, black circles might symbolize the cities. The size of the circles might be varied to symbolize each city's population. Symbols are defined by visual properties such as shape, size, color, spacing, and (in 3D) perspective height.Estimated time: 40 minutesSoftware requirements: ArcGIS Pro

  16. a

    WCC Potable Water Meter

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2023). WCC Potable Water Meter [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/d70eead642bf49e393a3b199f0c63e8c
    Explore at:
    Dataset updated
    May 3, 2023
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    WCC 3 Waters Asset Data exported out of InfoAsset at Wellington Water Ltd (WWL). Made up of 19 layers. Please check the date for the latest Data Updated date. Height levels are in terms of NZVD2016 as of 1 July 2022. *It has limited symbology, scales and includes Abandoned, removed & virtual assets. The data can be added to an Arc Pro project and it allows viewing the attribute tables & change symbols. It's other purpose is that it can be download from our Open Data Portal. https://data-wellingtonwater.opendata.arcgis.com/

  17. a

    National Archives Moderate Loop GPX File

    • rob-grow-adventures-and-other-musings-geogrow.hub.arcgis.com
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GrowRobert (2024). National Archives Moderate Loop GPX File [Dataset]. https://rob-grow-adventures-and-other-musings-geogrow.hub.arcgis.com/content/00628338802b4805aaa4702398c9e3bd
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    GrowRobert
    Area covered
    Description

    This zip file contains the GPX file of the National Archives moderate running loop, presented in the Steps Through History: A Runner’s Path in Washington DC story map by Robert Grow.This route weaves through some of DC’s most notable government icons, starting and ending at the Capitol. From there, you’ll pass by the National Archives, housing documents like the Declaration of Independence. The loop continues to the Dwight D. Eisenhower Memorial, with its striking sculptures honoring a WWII hero and president. This loop gives you a look at both the historic roots and the symbols of American governance.This GPX file was created in ArcGIS Pro, tracing the aerial imagery basemap, provided by ESRI. The GPX file is for reference only, it is not considered ground truth.

  18. a

    Mount Saint Helens in 3D: Before and After

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    Updated Aug 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2019). Mount Saint Helens in 3D: Before and After [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/b2f2143b43514e618c431e8bd9300840
    Explore at:
    Dataset updated
    Aug 7, 2019
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This 3D model of Mount Saint Helens shows the topography using wood-textured contours set at 50m vertical spacing, with the darker wood grain color indicating the major contours at 1000, 1500, 2000, and 2500 meters above sea level. The state of the mountain before the eruption of May 13, 1980 is shown with thinner contours, allowing you to see the volume of rock that was ejected via the lateral blast.The process to create the contours uses CityEngine and ArcGIS Pro for data processing, symbolization, and publishing. The steps:Create a rectangular AOI polygon and use the Clip Raster tool on your local terrain raster. A 30m DEM was used for before, 10m for after.Run the Contour tool on the clipped raster, using the polygon output option - 50m was used for this scene.Run the Smooth Polygon tool on the contours. For Mount St. Helens, I used the PAEK algorithm, with a 200m smoothing tolerance. Depending on the resolution of the elevation raster and the extent of the AOI, a larger or smaller value may be needed. Write a CityEngine rule (see below) that extrudes and textures each contour polygon to create a stair-stepped 3D contour map. Provide multiple wood texture options with parameters for: grain size, grain rotation, extrusion height (to account for different contour depths if values other than 100m are used), and a hook for the rule to read the ContourMax attribute that is created by the Contour tool. Export CityEngine rule as a Rule Package (*.rpk).Add some extra features for context - a wooden planter box to hide some of the edges of the model, and water bodies.Apply the CityEngine-authored RPK to the contour polygons in ArcGIS Pro as a procedural fill symbol, adjust parameters for desired look & feel.Run Layer 3D to Feature Class tool to convert the procedural fill to multipatch features. Share Web SceneRather than create a more complicated CityEngine rule that applied textures for light/dark wood colors for minor/major contours, I just created a complete light- and dark-wood version of the mountain (and one with just the water), then shuffled them together.Depending on where this methodology is applied, you may want to clip out other areas - for example, glaciers, roads, or rivers. Or add annotation by inlaying a small north arrow in the corner of the map. I like the challenge of representing any feature in this scene in terms of wood colors and grains - some extruded, some recessed, some inlaid flat.

  19. a

    PCC 3Waters Asset Data

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data-wellingtonwater.opendata.arcgis.com
    • +1more
    Updated Jul 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2022). PCC 3Waters Asset Data [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/599dbad3af174ce18ccfa8dad4564491
    Explore at:
    Dataset updated
    Jul 4, 2022
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    PCC 3Waters Asset Data exported from the Master Database at Wellington Water Ltd. It is made up of 19 layers. Please check the date for the latest Data Updated date.Height levels are in terms of NZVD2016 as of 1 July 2022.*This Federated Feature Service references our data in an Enterprise geodatabase (egdb) which is updated daily via FME workbench from InfoAsset. It has limited symbology and includes Abandoned, removed & virtual assets. It's purpose is so that staff can access the raw data which is updated daily. They can add it to their Arc Pro projects and it allows them to view the attribute tables & change symbols. It's other purpose is so that councils and the public can download the data form our Open Data Portal. It is only shared with our organisation in Enterprise because we dont want the public to use it as it is hosted on "our" server which is not as robust as the ESRI server. Also, if it's shared with the public, it may slow down the service for our staff. So every week it is copied to AGOL as a Hosted Feature Service which is shared with the public and our Open Data Portal.

  20. a

    HCC Wastewater Pump

    • data-wellingtonwater.opendata.arcgis.com
    Updated May 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2023). HCC Wastewater Pump [Dataset]. https://data-wellingtonwater.opendata.arcgis.com/datasets/c44206edd5ab4637b2c214a6de15e678
    Explore at:
    Dataset updated
    May 3, 2023
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    HCC 3 Waters Asset Data exported out of InfoAsset at Wellington Water Ltd (WWL). Made up of 19 layers for water, stormwater & wastewater networks - pipes, manholes, hydrants, valves, pump stations, reservoirs, meters, fittings and stormwater open channels. Please check the date for the latest Data Updated date. Height levels are in terms of NZVD2016 as of 1 July 2022. *It has limited symbology, scales and includes Abandoned, removed & virtual assets & some privately owned assets. The data can be added to an Arc Pro project and it allows viewing the attribute tables & change symbols. It's other purpose is that it can be download from our Open Data Portal. https://data-wellingtonwater.opendata.arcgis.com/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Styles (2019). Felt style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/f25e23a34ba245c98a3791e0a661f19b
Organization logo

Felt style for ArcGIS Pro

Explore at:
Dataset updated
Jul 30, 2019
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Styles
Description

I'd like you to make downloading, implementing, and sharing the output of, this felt-tastic style your new highest priority.So what do you get when you download this style, besides a rush of craft-induced adrenaline? These symbols...I've seeded the style with some pre-colored symbols but each and every one of these felty symbols can be dyed whatever color you want in the symbology panel. Here are some example maps using this style...Happy Mapping! John Nelson

Search
Clear search
Close search
Google apps
Main menu