Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
The Geoprocessing tool embeds the Web-based Transformation Tool released by Lands Department of HKSAR in ArcGIS and provides an instant extraction of height information of Hong Kong Principal Datum from various coordinate systems/datums. The Transformation Tool from Lands Department uses the conversion methods, parameters and formulas listed in the "Explanatory Notes on Geodetic Datums in Hong Kong" (PDF) and the "Datum Transformation and Transformation Parameters" (The "7-parameters") (PDF) as well as the Geoid Model established by the Hong Kong Polytechnic University. Please refer to this guidelines for using this geoprocessing tool in ArcGIS Pro.(Note: This tool is only applicable in ArcGIS Pro, and for coordinates within Hong Kong territories.)
Want to keep the data in your Hosted Feature Service current? Not interested in writing a lot of code?Leverage this Python Script from the command line, Windows Scheduled Task, or from within your own code to automate the replacement of data in an existing Hosted Feature Service. It can also be leveraged by your Notebook environment and automatically managed by the MNCD Tool!See the Sampler Notebook that features the OverwriteFS tool run from Online to update a Feature Service. It leverages MNCD to cache the OverwriteFS script for import to the Notebook. A great way to jump start your Feature Service update workflow! RequirementsPython v3.xArcGIS Python APIStored Connection Profile, defined by Python API 'GIS' module. Also accepts 'pro', to specify using the active ArcGIS Pro connection. Will require ArcGIS Pro and Arcpy!Pre-Existing Hosted Feature ServiceCapabilitiesOverwrite a Feature Service, refreshing the Service Item and DataBackup and reapply Service, Layer, and Item properties - New at v2.0.0Manage Service to Service or Service to Data relationships - New at v2.0.0Repair Lost Service File Item to Service Relationships, re-enabling Service Overwrite - New at v2.0.0'Swap Layer' capability for Views, allowing two Services to support a View, acting as Active and Idle role during Updates - New at v2.0.0Data Conversion capability, able to invoke following a download and before Service update - New at v2.0.0Includes 'Rss2Json' Conversion routine, able to read a RSS or GeoRSS source and generate GeoJson for Service Update - New at v2.0.0Renamed 'Rss2Json' to 'Xml2GeoJSON' for its enhanced capabilities, 'Rss2Json' remains for compatability - Revised at v2.1.0Added 'Json2GeoJSON' Conversion routine, able to read and manipulate Json or GeoJSON data for Service Updates - New at v2.1.0Can update other File item types like PDF, Word, Excel, and so on - New at v2.1.0Supports ArcGIS Python API v2.0 - New at v2.1.2RevisionsSep 29, 2021: Long awaited update to v2.0.0!Sep 30, 2021: v2.0.1, Patch to correct Outcome Status when download or Coversion resulted in no change. Also updated documentation.Oct 7, 2021: v2.0.2, workflow Patch correcting Extent update of Views when Overwriting Service, discovered following recent ArcGIS Online update. Enhancements to 'datetimeUtil' Support script.Nov 30, 2021: v2.1.0, added new 'Json2GeoJSON' Converter, enhanced 'Xml2GeoJSON' Converter, retired 'Rss2Json' Converter, added new Option Switches 'IgnoreAge' and 'UpdateTarget' for source age control and QA/QC workflows, revised Optimization logic and CRC comparison on downloads.Dec 1, 2021: v2.1.1, Only a patch to Conversion routines: Corrected handling of null Z-values in Geometries (discovered immediately following release 2.1.0), improve error trapping while processing rows, and added deprecation message to retired 'Rss2Json' conversion routine.Feb 22, 2022: v2.1.2, Patch to detect and re-apply case-insensitive field indexes. Update to allow Swapping Layers to Service without an associated file item. Added cache refresh following updates. Patch to support Python API 2.0 service 'table' property. Patches to 'Json2GeoJSON' and 'Xml2GeoJSON' converter routines.Sep 5, 2024: v2.1.4, Patch service manager refresh failure issue. Added trace report to Convert execution on exception. Set 'ignore-DataItemCheck' property to True when 'GetTarget' action initiated. Hardened Async job status check. Update 'overwriteFeatureService' to support GeoPackage type and file item type when item.name includes a period, updated retry loop to try one final overwrite after del, fixed error stop issue on failed overwrite attempts. Removed restriction on uploading files larger than 2GB. Restores missing 'itemInfo' file on service File items. Corrected false swap success when view has no layers. Lifted restriction of Overwrite/Swap Layers for OGC. Added 'serviceDescription' to service detail backup. Added 'thumbnail' to item backup/restore logic. Added 'byLayerOrder' parameter to 'swapFeatureViewLayers'. Added 'SwapByOrder' action switch. Patch added to overwriteFeatureService 'status' check. Patch for June 2024 update made to 'managers.overwrite' API script that blocks uploads > 25MB, API v2.3.0.3. Patch 'overwriteFeatureService' to correctly identify overwrite file if service has multiple Service2Data relationships.Includes documentation updates!
Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. Provides a general overview of protection status including management designations. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.The USGS Protected Areas Database of the United States (PAD-US) classifies lands into four GAP Status classes:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionIn the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, or 3GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
The Intelligent Road Network dataset provided by the Transport Department includes traffic directions, turning restrictions at road junctions, stopping restrictions, on-street parking spaces and other road traffic data for supporting the development of intelligent transport system, fleet management system and car navigation etc. by the public.
Esri China (HK) has prepared this File Geodatabase containing a Network Dataset for the Intelligent Road Network to support Esri GIS users to use the dataset in ArcGIS Pro without going through long configuration steps. Please refer to this guideline to use the Road Network Dataset in ArcGIS Pro for routing analysis. This network dataset has been configured and deployed the following restrictions:
Speed LimitTurnIntersectionTraffic FeaturesPedestrian ZoneTraffic Sign of ProhibitionVehicle RestrictionThe coordinate system of this dataset is Hong Kong 1980 Grid.The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Transport Department at https://data.gov.hk/en-data/dataset/hk-td-tis_15-road-network-v2.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.Dataset last updated on: 2021 July
Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
This data contains general information about Pedestrian Network in Hong Kong. Pedestrian Network is a set of 3D line features derived from road features and road furniture from Lands Department and Transport Department. A number of attributes are associated with the pedestrian network such as spatially related street names. Besides, the pedestrian network includes information like wheelchair accessibility and obstacles to facilitate the digital inclusion for the needy. Please refer to this video to learn how to use 3D Pedestrian Network Dataset in ArcGIS Pro to facilitate your transportation analysis.The data was provided in the formats of JSON, GML and GDB by Lands Department and downloaded via GEODATA.GOV.HK website.
The original data files were processed and converted into an Esri file geodatabase. Wheelchair accessibility, escalator/lift, staircase walking speed and street gradient were used to create and build a network dataset in order to demonstrate basic functions for pedestrian network and routing analysis in ArcMap and ArcGIS Pro. There are other tables and feature classes in the file geodatabase but they are not included in the network dataset, users have to consider the use of information based on their requirements and make necessary configurations. The coordinate system of this dataset is Hong Kong 1980 Grid.
The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.
For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Lands Department at https://geodata.gov.hk/gs/download-datadict/201eaaee-47d6-42d0-ac81-19a430f63952.
For details about the data, source format and terms of conditions of usage, please refer to the website of GEODATA STORE at https://geodata.gov.hk.Dataset last updated on: 2022 Oct
This data represents a land use survey of 2017 San Joaquin County conducted by the California Department of Water Resources, North Central Region Office staff. Land use field boundaries were digitized with ArcGIS 10.5.1 using 2016 NAIP as the base, and Google Earth and Sentinel-2 imagery website were used as reference as well. Agricultural fields were delineated by following actual field boundaries instead of using the centerlines of roads to represent the field borders. Field boundaries were not drawn to represent legal parcel (ownership) boundaries and are not meant to be used as parcel boundaries. The field work for this survey was conducted from July 2017 through August 2017. Images, land use boundaries and ESRI ArcMap software were loaded onto Surface Pro tablet PCs that were used as the field data collection tools. Staff took these Surface Pro tablet into the field and virtually all agricultural fields were visited to identify the land use. Global positioning System (GPS) units connected to the laptops were used to confirm the surveyor's location with respect to the fields. Land use codes were digitized in the field using dropdown selections from defined domains. Agricultural fields the staff were unable to access were designated 'E' in the Class field for Entry Denied in accordance with the 2016 Land Use Legend. The areas designated with 'E' were also interpreted using a combination of Google Earth, Sentinel-2 Imagery website, Land IQ (LIQ) 2017 Delta Survey, and the county of San Joaquin 2017 Agriculture GIS feature class. Upon completion of the survey, a Python script was used to convert the data table into the standard land use format. ArcGIS geoprocessing tools and topology rules were used to locate errors for quality control. The primary focus of this land use survey is mapping agricultural fields. Urban residences and other urban areas were delineated using aerial photo interpretation. Some urban areas may have been missed. Rural residential land use was delineated by drawing polygons to surround houses and other buildings along with some of the surrounding land. These footprint areas do not represent the entire footprint of urban land. Water source information was not collected for this land use survey. Therefore, the water source has been designated as Unknown. Before final processing, standard quality control procedures were performed jointly by staff at DWR’s North Central Region,Office and at DRA's headquarters office under the leadership of Muffet Wilkerson, Senior Land and Water Use Supervisor. After quality control procedures were completed, the data was finalized. The positional accuracy of the digital line work, which is based upon the orthorectified NAIP imagery, is approximately 6 meters. The land use attribute accuracy for agricultural fields is high, because almost every delineated field was visited by a surveyor. The accuracy is 95 percent because some errors may have occurred. Possible sources of attribute errors are: a) Human error in the identification of crop types, b) Data entry errors.
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The Protected Areas Database of the United States provides a comprehensive map of lands protected by government agencies and private land owners. This database combines federal lands with information on state and local government lands and conservation easements on private lands to create a powerful resource for land-use planning.Dataset SummaryPhenomenon Mapped: Areas mapped in the Protected Areas Data base of the United States (GAP Status 1-4)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays lands mapped in Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays all four GAP Status classes: GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionThe source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
This downloadable zip file contains an ESRI File Geodatabase that is compatible with most versions of ArcGIS Pro, ArcMap, and AutoCAD Map 3D or Civil 3D. To view the geodatabase’s contents, please download the zip file to a local directory and extract its contents. This zipped geodatabase will require approximately 2.85 GB of disc space (3.09 GB extracted). Due to its size, the zip file may take some time to download.This topographic contour layer was derived from LiDAR collected in spring of 2018 by Dewberry Engineers in coordination with Tallahassee - Leon County GIS. The contours were extracted at a 2 foot interval with index contours every 10 feet. Lidar Acquisition Executive SummaryThe primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (lidar) technology for the Tallahassee Leon County Project Area. The lidar data were processed and classified according to project specifications. Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 5000 ft by 5000 ft. A total of 876 tiles were produced for the project encompassing an area of approximately 785.55 sq. miles.THE PROJECT TEAMDewberry served as the prime contractor for the project. In addition to project management, Dewberry was responsible for LAS classification, all lidar products, breakline production, Digital Elevation Model (DEM) production, and quality assurance. Dewberry’s Frederick C. Rankin completed ground surveying for the project and delivered surveyed checkpoints. His task was to acquire surveyed checkpoints for the project to use in independent testing of the vertical accuracy of the lidar-derived surface model. He also verified the GPS base station coordinates used during lidar data acquisition to ensure that the base station coordinates were accurate. Please see Appendix A to view the separate Survey Report that was created for this portion of the project. Digital Aerial Solutions, LLC completed lidar data acquisition and data calibration for the project area.SURVEY AREAThe project area addressed by this report falls within the Florida county of Leon.DATE OF SURVEYThe lidar aerial acquisition was conducted from February 05, 2018 thru April 25, 2018.ORIGINAL COORDINATE REFERENCE SYSTEMData produced for the project were delivered in the following reference system.Horizontal Datum: The horizontal datum for the project is North American Datum of 1983 with the 2011 Adjustment (NAD 83 (2011))Vertical Datum: The Vertical datum for the project is North American Vertical Datum of 1988 (NAVD88)Coordinate System: NAD83 (2011) State Plane Florida North (US survey feet)Units: Horizontal units are in U.S. Survey Feet, Vertical units are in U.S. Survey Feet.Geiod Model: Geoid12B (Geoid 12B) was used to convert ellipsoid heights to orthometric heights).
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.In the United States, multiple-use lands, such as National Forests and Bureau of Land Management lands, are protected from land cover conversion but allow extractive activities such as logging, mining, and off-road vehicle use. Understanding the geographic distribution of these protected areas is an important part of landscape-scale planning. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the third highest level of protection known as GAP Status 3. Because designations may overlap, some areas such as where Wilderness Areas overlap National Forests may have a higher level of protection than indicated in this layer. See the USA Protected Areas or the USA Protected Areas - GAP 1-4 layers for the highest level of protection for a specific area.Dataset SummaryPhenomenon Mapped: Areas managed for multiple-use where extractive activities may occur (GAP Status 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 3 - areas subject to mulitple-use management where extractive activities may occur.The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "GAP Status 3" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "GAP Status 3" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Metals and other materials gradually deteriorate through chemical reactions with their environment. This process, known as corrosion, occurs slowly in some soils and more quickly in other. When in contact with soil, the iron in steel is dissolved and the steel weakened through chemical processes that convert iron into its ions. This layer classifies soils with low, moderate, and high rates of corrosion of uncoated steel based on drainage class, acidity, and electrical conductivity of the soil. For more information on the classification system, see the National Soil Survey Handbook.Low corrosion riskModerate corrosion riskHigh corrosion risk Dataset SummaryPhenomenon Mapped: Corrosion of steelGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m soils produced by the Natural Resources Conservation Service (NRCS). The value for steel corrosion is derived from the gSSURGO component table field Corrosion Steel (corsteel). The value in this layer is the dominant condition found within the map unit. What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "steel corrosion" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "steel corrosion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The Terrain Ruggedness Index (TRI) is used to express the amount of elevation difference between adjacent cells of a DEM. This raster function template is used to generate a visual representation of the TRI with your elevation data. The results are interpreted as follows:0-80m is considered to represent a level terrain surface81-116m represents a nearly level surface117-161m represents a slightly rugged surface162-239m represents an intermediately rugged surface240-497m represents a moderately rugged surface498-958m represents a highly rugged surface959-4367m represents an extremely rugged surfaceWhen to use this raster function templateThe main value of this measurement is that it gives a relatively accurate view of the vertical change taking place in the terrain model from cell to cell. The TRI provides data on the relative change in height of the hillslope (rise), such as the side of a canyon.How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual TRI representation of your imagery. This index supports elevation data.References:Raster functionsApplicable geographiesThe index is a standard index which is designed to work globally.
This layer uses sand, silt, and clay most likely values from soilgrids.org to create texture classes. Soilgrids.org sand, silt, and clay datasets are integers that give a weight in grams in each particle class. The weight we are converting directly into percent, for example soilgrids value of 500g of sand means 50% sand ((500g/1kg) * 100 = 50%).A 100cm depth was chosen because it matches many of the world's most important crops' rooting depths. A 0 to 60cm version of this is also available.Variable mapped: Predominant USDA texture class as derived from predicted percent sand, silt, and clay.Data Projection: Goode's Homolosine (land) WKID 54052Mosaic Projection: Goode's Homolosine (land) WKID 54052Extent: World, except AntarcticaCell Size: 250 mSource Type: ThematicVisible Scale: All scales are visibleSource: SoilGrids.orgPublication Date: June 14, 2021NOTE: This layer uses the USDA texture classification system with international soil datasets, which use different particle size definitions than the USDA. Very little silt shows up in this layer, this could be a reason why.To determine the predominant soil texture we first classified texture for the following layer depths:0-5cm5-15cm15-30cm30-60cm60-100cmThen we used focal statistics with the majority option to find the majority texture class of each pixel from the five layers, weighted as follows:0-5cm * 15-15cm * 215-30cm * 330-60cm * 660-100cm * 7 (not 8, something had to break the tie and I reduced the multiplier by 1 to break ties, thinking of all soil depths the depth from 95-100cm may be the least significant in the stack overall.)-----------------------------------------------------------------Raster functions were created to classify sand, silt, and clay using the following statements in raster calculator:Sand Con((( Silt + ( 1.5 * Clay )) < 150 ), 1, 0)Loamy Sand Con(((Silt + (1.5 * Clay)) >= 150) & ((Silt + (2 * Clay)) < 300),2, 0)Sandy Loam Con(((Clay
=70)&(Clay<200)&(Sand>520)&((Silt + (2 * Clay)) = 300))|((Clay<70)&(Silt<500)&((Silt + (2 * Clay)) = 300)),4, 0)Loam Con(((Clay>=70) & (Clay<270) & (Silt>=280) & (Silt<500) & (Sand<=520)),8 ,0)Silt LoamCon((((Silt>=500) & (Clay>=120) & (Clay<270)) | ((Silt>=500) & (Silt<800) & (Clay<120))),16 , 0)SiltCon(((Silt >= 800)&(Clay<120)),32 ,0)Sandy Clay LoamCon(((Clay>=200) & (Clay < 350) & (Silt < 280) & (Sand > 450)),64 ,0)Clay LoamCon(((Clay >= 270) & (Clay<400) & (Sand > 200) & (Sand <= 450)), 128, 0)Silty Clay LoamCon(((Clay >= 270) & (Clay < 400) & (Sand <= 200)),256 ,0)Sandy ClayCon(((Clay >= 350) & (Sand > 450)) ,512 , 0)Silty Clay Con(((Clay >= 400) & (Silt >= 400)), 1024, 0)Clay Con(((Clay>=400) & (Sand <= 450) & (Silt < 400)) , 2048 , 0 )These conditionals were used on the "mean" soilgrids.org rasters for silt, sand, and clay on rasters representing the following depths:0-5 cm below the land surface5-15cm below the land surface15-30cm below the land surface30-60cm below the land surface60-100cm below the land surfaceThe conditionals were just summed together to create check rasters for each depth. All analysis was done in soilgrids.org own Goode's Homolosine projection (land) in ArcGIS Pro. The data were served in this same projection in ArcGIS Image for ArcGIS Online.---------------------------------------------------------------------------------------------------At first, the classes were given a value of 1, 2, 4, 8, 16, 32 and so on, then were added together. This is so we could see if some classes were overlapping others. We continued to troubleshoot the above definitions until there were no overlaps and as few values of 0 as possible. Once the overlaps and misses were fixed, the dataset was reclassed into values of 1-13. An attribute table was built to drive popups and a legend.
This layer shows Household Pulse Survey data on gender identity and sexual orientation. Gender identity is the internal perception of gender, and how one identifies based on how one aligns or doesn’t align with cultural options for gender. This is a different concept than sex assigned at birth. Sexual orientation is the type of sexual attraction one has the capacity to feel for others, generally labeled based on the gender relationship between the person and the people they are attracted to. This is not the same as sexual behavior or preference.Learn more about how the Census Bureau survey measures sexual orientation and gender identity. This page includes nation-wide characteristics such as age, Hispanic origin and race, and educational attainment. Also read some of their findings about experiences during the COVID-19 pandemic, such as lesbian, gay, bisexual, or transgender (LGBT) adults experiencing higher rates of both economic hardship and mental health hardship. See the questionnaire used in phase 3.2 of the Household Pulse Survey.Source: Household Pulse Survey Data Tables. Data values in this layer are from Week 34 (July 21 - August 2, 2021), the first week that gender identity and sexual orientation questions were part of this survey. Top 15 metros are based on total population and are the same 15 metros available for all Household Pulse Data Tables.This layer is symbolized to show the percent of adults who are lesbian, gay, bisexual, or transgender (LGBT) as well as adults whose gender or sexual orientation was not listed on the survey (LGBTQIA+). The color of the symbol depicts the percentage and the size of the symbol depicts the count. *Percent calculations do not use those who did not report either their gender or sexual orientation in either the numerator or denominator, consistent with methodology used by the source.*Data Prep Steps:Data prep used Table 1 (Child Tax Credit Payment Status and Use, by Select Characteristics) to perform tabular data transformation. SAS to Table conversion tool was used to bring the tables into ArcGIS Pro.The data is joined to 2019 TIGER boundaries from the U.S. Census Bureau.Using the counties in each metro according to the Metropolitan and Micropolitan Statistical Area Reference Files, metro boundaries created via Merge and Dissolve tools in ArcGIS Pro.In preparing the field aliases and long descriptions, "none of these" and "something else" were generally modified to "not listed."
This is a Locator for finding British National Grid references. It provides lookups on the British National Grid, which can be applied to all Ordnance Survey maps of Great Britain. You can use it to query by absolute coordinates or by tile. Both types of query return the centre point of the corresponding 10k grid square BNG tile. Enter grid coordinates as absolute XY: 123456, 654321 Enter tile queries as Grid squares: TL44; as sub tile: TQ1234 or; as quadrant SN1234SE
Cette boîte à outils "LiDAR HD for ArcGIS" permet d'ajouter des outils facilitant l'usage des données LiDAR HD de l'IGN dans ArcGIS Pro. Version 1.3 (29/04/2025)Ajout de l'outil "Coloriser un jeu de données LAS à partir des OrthoHR IGN". Ce nouvel outil permet la colorisation de vos fichiers LiDAR HD (au format LAS ou ZLAS) directement à partir de service WMS OrthoHR de l'IGN, ce qui vous évite de télécharger l'ensemble d'un département pour coloriser uniquement quelques km². Cet outil peut être enchainé à l'outil "Télécharger et convertir des tuiles LiDAR HD" pour un workflow complet.Version 1.2 (14/03/2025)Modification de l'outil "Télécharger et convertir des tuiles LiDAR HD" : Modification du paramètre de l'outil correspondant au jeu de données LAS en sortie pour le gérer en tant que "LAS Dataset" et pouvoir ainsi utiliser cette sortie dans un modèle de géotraitement.Version 1.1 (02/03/2025)Modification de l'outil "Télécharger et convertir des tuiles LiDAR HD" : Support du format ZLAS (format compressé Esri) en plus du format LAS. Cela permet la conversion des fichiers de l'IGN en jeux de données LAS moins volumineux tout en gardant la possibilité de modifier les points (notamment la classification) dans les nuages de points.Version 1.0 (19/02/2025)Dans cette première version, deux outils ont été ajoutés :L'outil "Ajouter la couche de la couverture LiDAR HD" permet d'ajouter la couche de la couverture courante des LiDAR HD de l'IGN. L'outil ajoute un groupe de 2 couches contenant respectivement les emprises des blocs et les tuiles. Il n'est pas nécessaire d'ajouter ces couches pour exécuter les autres outils de cette boîte à outils.L'outil "Télécharger et convertir des tuiles LiDAR HD" permet de télécharger, depuis le site Open Data de l'IGN, les tuiles LiDAR HD sur la zone d'intérêt spécifiée. Cette zone d'intérêt peut venir d'une couches d'entités (poins, lignes, polygones) existantes ou bien être dessinée interactivement lors de l'exécution de l'outil. Après le téléchargement, l'outil convertit les fichiers COPC LAZ au format standard LAS puis référence ces fichiers dans un jeu de données LAS (LAS Dataset). Pour terminer, l'outil calcule la pyramide sur le jeu de données LAS pour optimiser les performances d'affichage. Si vous utilisez ArcGIS Pro basic, cet outil nécessite l'extension Spatial Analyst ou 3D Analyst. InstallationTélécharger le fichier ZIP depuis cette page.Décompresser le fichier "LiDAR HD for ArcGIS.atbx" dans le dossier de votre choix.Dans ArcGIS Pro, ajouter la boîte à outils dans votre projet courant (ou en tant que boîte à outils par défaut dans tous les projets ArcGIS Pro si vous le souhaitez).La boîte à outils "LiDAR HD for ArcGIS" est alors disponible. Elle peut être utilisée dans le contexte d'une carte (2D) ou d'une scène (3D)
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.