34 datasets found
  1. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  2. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  3. D

    Detroit Street View Panoramic Imagery

    • detroitdata.org
    • data.detroitmi.gov
    • +2more
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2023). Detroit Street View Panoramic Imagery [Dataset]. https://detroitdata.org/dataset/detroit-street-view-panoramic-imagery
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    City of Detroit
    Area covered
    Detroit
    Description
    Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ 360° panoramic imagery (as well as LiDAR) is collected using a vehicle-mounted mobile mapping system.

    The City of Detroit distributes 360° panoramic street view imagery from the Detroit Street View program via Mapillary.com. Within Mapillary, users can search address, pan/zoom around the map, and load images by clicking on image points. Mapillary also provides several tools for accessing and analyzing information including:
    Please see Mapillary API documentation for more information about programmatic access and specific data components within Mapillary.
    DSV Logo
  4. d

    Geology constrains biomineralization expression and functional trait...

    • datadryad.org
    • zenodo.org
    zip
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T. Mason Linscott; Nicole Recla; Christine Parent (2023). Geology constrains biomineralization expression and functional trait distribution in the Mountainsnails (Oreohelix) [Dataset]. http://doi.org/10.5061/dryad.0k6djhb40
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 22, 2023
    Dataset provided by
    Dryad
    Authors
    T. Mason Linscott; Nicole Recla; Christine Parent
    Time period covered
    2022
    Description

    ArcGIS Pro/QGIS to modify layers R for scripts

  5. World Imagery

    • hurricane-tx-arcgisforem.hub.arcgis.com
    • esriaustraliahub.com.au
    • +6more
    Updated Dec 13, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). World Imagery [Dataset]. https://hurricane-tx-arcgisforem.hub.arcgis.com/maps/esri::world-imagery/about?layer=1
    Explore at:
    Dataset updated
    Dec 13, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  6. i

    Data from: Pockmark morphological attributes at the Aquitaine slope,...

    • sextant.ifremer.fr
    • seanoe.org
    rel-canonical +2
    Updated May 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IFREMER, Unité Géosciences Marines, France (2021). Pockmark morphological attributes at the Aquitaine slope, GAZCOGNE1 (2013) and BOBGEO2 (2010) marine expeditions [Dataset]. https://sextant.ifremer.fr/record/seanoe:48323/
    Explore at:
    rel-canonical, www:download-1.0-link--download, www:link-1.0-http--metadata-urlAvailable download formats
    Dataset updated
    May 12, 2021
    Dataset authored and provided by
    IFREMER, Unité Géosciences Marines, France
    Area covered
    Description

    Pockmarks are defined as depressions on the seabed and are usually formed by fluid expulsions. Recently discovered, pockmarks along the Aquitaine slope within the French EEZ, were manually mapped although two semi-automated methods were tested without convincing results. In order to potentially highlight different groups and possibly discriminate the nature of the fluids involved in their formation and evolution, a morphological study was conducted, mainly based on multibeam data and in particular bathymetry from the marine expedition GAZCOGNE1, 2013. Bathymetry and seafloor backscatter data, covering more than 3200 km², were acquired with the Kongsberg EM302 ship-borne multibeam echosounder of the R/V Le Suroît at a speed of ~8 knots, operated at a frequency of 30 kHz and calibrated with ©Sippican shots. Precision of seafloor backscatter amplitude is +/- 1 dB. Multibeam data, processed using Caraibes (©IFREMER), were gridded at 15x15 m and down to 10x10 m cells, for bathymetry and seafloor backscatter, respectively. The present table includes 11 morphological attributes extracted from a Geographical Information System project (Mercator 44°N conserved latitude in WGS84 Datum) and additional parameters related to seafloor backscatter amplitudes. Pockmark occurrence with regards to the different morphological domains is derived from a morphological analysis manually performed and based on GAZCOGNE1 and BOBGEO2 bathymetric datasets. The pockmark area and its perimeter were calculated with the “Calculate Geometry” tool of Arcmap 10.2 (©ESRI) (https://desktop.arcgis.com/en/arcmap/10.3/manage-data/tables/calculating-area-length-and-other-geometric-properties.htm). A first method to calculate pockmark internal depth developed by Gafeira et al. was tested (Gafeira J, Long D, Diaz-Doce D (2012) Semi-automated characterisation of seabed pockmarks in the central North Sea. Near Surface Geophysics 10 (4):303-315, doi:10.3997/1873-0604.2012018). This method is based on the “Fill” function from the Hydrology toolset in Spatial Analyst Toolbox Arcmap 10.2 (©ESRI), (https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/fill.htm) which fills the closed depressions. The difference between filled bathymetry and initial bathymetry produces a raster grid only highlighting filled depressions. Thus, only the maximum filling values which correspond to the internal depths at the apex of the pockmark were extracted. For the second method, the internal pockmark depth was calculated with the difference between minimum and maximum bathymetry within the pockmark. Latitude and longitude of the pockmark centroid, minor and major axis lengths and major axis direction of the pockmarks were calculated inside each depression with the “Zonal Geometry as Table” tool from Spatial Analyst Toolbox in ArcGIS 10.2 (©ESRI) (https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/zonal-statistics.htm). Pockmark elongation was calculated as the ratio between the major and minor axis length. Cell count is the number of cells used inside each pockmark to calculate statistics (https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/zonal-geometry.htm). Cell count and minimum, maximum and mean bathymetry, slope and seafloor backscatter values were calculated within each pockmark with “Zonal Statistics as Table” tool from Spatial Analyst Toolbox in ArcGIS 10.2 (©ESRI). Slope was calculated from bathymetry with “Slope” function from Spatial Analyst Toolbox in ArcGIS 10.2 (©ESRI) and preserves its 15 m grid size (https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/slope.htm). Seafloor backscatter amplitudes (minimum, maximum and mean values) of the surrounding sediments were calculated within a 100 m buffer around the pockmark rim.

  7. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Liu, Jie
    Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  8. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. 75m Resolution Metadata

    • inspiracie.arcgeo.sk
    • digital-earth-pacificcore.hub.arcgis.com
    • +1more
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 75m Resolution Metadata [Dataset]. https://inspiracie.arcgeo.sk/datasets/esri::75m-resolution-metadata-114/about
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  10. 4.8m Resolution Metadata

    • pacificgeoportal.com
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 4.8m Resolution Metadata [Dataset]. https://www.pacificgeoportal.com/datasets/esri::4-8m-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  11. National Hydrography Dataset Plus Version 2.1

    • geodata.colorado.gov
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://geodata.colorado.gov/datasets/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  12. r

    Reference Elevation Model of Antarctica version 2, 100 metre contours

    • researchdata.edu.au
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MAZUREK, RICHARD; Mazurek, R.; MAZUREK, RICHARD (2022). Reference Elevation Model of Antarctica version 2, 100 metre contours [Dataset]. https://researchdata.edu.au/reference-elevation-model-metre-contours/3650809
    Explore at:
    Dataset updated
    Dec 8, 2022
    Dataset provided by
    Australian Antarctic Division
    Australian Antarctic Data Centre
    Authors
    MAZUREK, RICHARD; Mazurek, R.; MAZUREK, RICHARD
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2009 - Dec 31, 2021
    Area covered
    Description

    This dataset consists of 100-metre-interval contour lines across East Antarctica. The contours are derived from the REMA 2 (Reference Elevation Model of Antarctica version 2) 10-metre mosaic digital elevation model. Features were produced using the ArcGIS Pro 'Generate Topographic Contours' tool with a Raster Smooth Tolerance of 0.6, a Contour Minimum Length of 300 metres, and a Contour Smooth Tolerance of 150 metres based on an output map scale of 1:1 million. Contour generation was limited to a source mosaic tile set extending from the from approximately 31°E to 177°E and from the coast inland to approximately 76°S. The contours were edited to remove holes present in the source DEM and some shorter-length contours were manually removed to improve clarity. This data is stored in the AAD's relief ln enterprise dataset.

  13. c

    World Imagery for Central Asia and Caucasus Region

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). World Imagery for Central Asia and Caucasus Region [Dataset]. https://www.cacgeoportal.com/maps/cacgeoportal::world-imagery-for-central-asia-and-caucasus-region/about?path=
    Explore at:
    Dataset updated
    Apr 4, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This web map is a subset of World Imagery Layer. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  14. Cicatrices de quema por región (Histórico). Escala: 1:100.000

    • datos.siatac.co
    • datos.gov.co
    • +2more
    Updated Jan 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laboratorio SIG y SR - Instituto SINCHI (2020). Cicatrices de quema por región (Histórico). Escala: 1:100.000 [Dataset]. https://datos.siatac.co/datasets/31b4f21bfb6047659d5bc2b335d99eff
    Explore at:
    Dataset updated
    Jan 15, 2020
    Dataset provided by
    Sinchi Amazonic Institute of Scientific Researchhttp://www.sinchi.org.co/
    Authors
    Laboratorio SIG y SR - Instituto SINCHI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Descarga aquí el metadato:https://aplicaciones.siatac.co/geonetwork/srv/spa/catalog.search#/metadata/1742d666-50c8-4573-823e-5c5189ac0bbdDescarga aquí el shapefile:https://opendata.arcgis.com/datasets/31b4f21bfb6047659d5bc2b335d99eff_0.zipCorresponde a la capa de cicatrices por quemas en la Amazonía colombiana desde marzo del 2017 a escala 1:100.000. Para generar esta capa se seleccionan las imágenes satelitales, del programa LandSat; deben tener menos del 30% de nubes. Se hace una verificación de la cantidad puntos de calor detectados durante el mes de monitoreo, para corroborar cuales Path Row que cubren la región amazónica (4-57, 4-58, 4-59, 4-60, 4-61, 4-62, 4-63, 9-59, 9-60, 7-58, 7-59, 7-60, 7-61, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 3-57, 3-58, 3-59, 8-58, 8-59, 8-60, 6-57, 6-58, 6-59, 6-60, 6-61, 6-62) deben priorizarse para la descarga.Para el procesamiento y clasificación de las imágenes, y los diferentes geoprocesos se usan herramientas del software ArcGis (Esri, 2022a). Con este programa se aplican los “Model Builder” que se han generado para este procesamiento, los cuales hacen parte de los flujos de trabajo (Workflow) construidos en la plataforma SIATAC. Con las imágenes se generan dos composiciones de color RGB , (1) una que integra el Índice de Vegetación de Diferencia Normalizada - NDVI (B5-B4/B5+B4), el Radio Normalizado de Quema-NBR (B5-B7/ (B5+B7) y la banda del infrarrojo cercano -IR (B5); (2) la otra composición se hace con las bandas B7-B5-B2; estas composiciones resaltan las áreas que han sufrido procesos de quema de la vegetación (Murcia & Otavo, 2018).Con la composición RGB (1) se hace una clasificación no supervisada tipo clúster (Clúster Iso) (Esri, 2022b) y se generan 11 clases. Sobre esta capa ráster se hace una verificación visual para determinar cuál de las 11 clases corresponde a las cicatrices, este proceso se hace con respaldo en el protocolo metodológico (Murcia et al., 2018) y las dos composiciones ya generadas. Una vez seleccionada la clase que se ha verificado como cicatrices, se hace una reclasificación binaria de las unidades, en la que uno (1) son cicatrices y cero (0) las otras clases. En el mismo proceso (Model Builder) se hace la vectorización y se genera la capa de polígonos de cicatrices.Luego se hace una verificación visual de los polígonos generados, para descartar aquellos que no son cicatrices, para esto se aplican los criterios previstos en el protocolo metodológico (Murcia et al., 2018) teniendo como referente las dos composiciones previamente generadas. Con la capa resultado se hace un proceso de análisis espacial de intersección (Esri, 2022c) para descartar las cicatrices que ya fueron clasificadas en el mes anterior.A la capa resultante se le hace control de calidad para verificar la exactitud temática, validando aspectos como delimitación, errores por omisión y errores por comisión. De igual modo, se verifica que la capa cumpla con todos los criterios de topología como la correcta adyacencia entre polígonos, y se aprueba la capa.En el siguiente paso, la capa aprobada se integra en un WorkFlow (Esri, 2022d) de la base de datos en la plataforma SIG de Esri, del SIATAC. Luego se aplica un proceso SIG de intersección mediante el cual se clasifican las cicatrices que se ubican en áreas que eran bosques, según la capa de bosques más reciente generada por el IDEAM (Ideam, 2022). Sobre los polígonos restantes, se aplica el mismo proceso SIG (intersección) con la capa de coberturas de la tierra, del periodo más reciente (Sinchi, 2022) y se clasifican las cicatrices que se ubican en donde había vegetación secundaria u otras coberturas, principalmente pastos.La capa resultante se somete a un proceso de análisis espacial de intersección para generar la información de las cicatrices con el tipo de cobertura vegetal afectada, por cada Unidad Espacial de Referencia (UER): Grandes paisajes, Jurisdicción de Corporaciones Autónomas Regionales o de Desarrollo sostenible, Estado legal del territorio, Departamentos y Municipios. Para finalizar, las estadísticas se publican en el portal del Sistema de Información Ambiental Territorial de la Amazonia colombiana -SIATAC (https://siatac.co/cicatrices-de-quema/).BIBLIOGRAFÍAMurcia, U. & Otavo, S. (2018). La amazonia se quema: Detección de áreas con mayor ocurrencia de incendios de vegetación como estrategia para la prevención y control. Revista Colombiana Amazónica No 11 de 2018, 59-72. https://sinchi.org.co/11-revista-colombia-amazonica.Cañon I., Gordillo G., León A., Murcia U., Romero H., Velásquez M. (2018). Protocolo para el monitoreo de cicatrices por quemas en la Amazonia colombiana. 46pp.Esri. (2022a). ArcGIS Desktop.https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview.Esri. (2022b). Clasificación no supervisada de clúster ISO.https://pro.arcgis.com/es/pro-app/2.8/tool-reference/spatial-analyst/iso-cluster-unsupervised-classification.htmEsri. (2022c). Intersección (Análisis).https://pro.arcgis.com/es/pro-app/latest/tool-reference/analysis/intersect.htmEsri. (2022d). ArcGIS Workflow Manager (Análisis).https://www.esri.com/en-us/arcgis/products/arcgis-workflow-manager/overviewIdeam. (2022). Sistema de Monitoreo de bosques y carbono SMBYC.https://smbyc.ideam.gov.co/MonitoreoBC-WEB/reg/indexLogOn.jspSinchi. (2022). Sistema de Monitoreo de las Coberturas de la tierra de la Amazonia colombiana SIMCOBA. Datos abiertos.https://datos.siatac.co/pages/coberturasDiccionario de datos:objectid: Corresponde al identificador propio de cada registro dentro de la capa de informaciónarea_ha: Corresponde al área en hectáreas de la unidad seleccionadaarea_km2: Corresponde al área en kilómetros cuadrados de la unidad seleccionadaano: Corresponde al año de publicación de la cicatriz de quemaorigen: Corresponde a la cobertura que fue afectada por la cicatriz de quemames: Corresponde al mes de publicación de la cicatriz de quemafecha_registro: Corresponde a la fecha de publicación de la cicatriz de quemashape: Corresponde a geometría del elementost_area(shape): Corresponde al área del elementost_length(shape): Corresponde al perímetro del elementoFuente:Modelos de Funcionamiento y Sostenibilidad del Laboratorio SIG y SRBogotá D.C., Colombia siatac.coCalle 20 # 5 - 44Código Postal: 110311 Teléfono: +57 (1) 4442060Horario de atención: 8:00 am - 5:00 pm de Lunes a Viernes Información de contacto:Establecer previo contacto telefónico o a través de correo electrónico, para realizar la solicitud o fijar una cita en el horario de atención.

  15. a

    Pacific Region Imagery

    • digital-earth-pacificcore.hub.arcgis.com
    • pacificgeoportal.com
    Updated Sep 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Pacific Region Imagery [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/maps/98fd7ac2ce984be392b9cd6dee97777b
    Explore at:
    Dataset updated
    Sep 26, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    Area covered
    Description

    This layer is a subset from the World Imagery to focus on the Pacific Region. You can access World Imagery from here. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  16. a

    World Imagery - ESRI

    • hub.arcgis.com
    • fesec-cesj.opendata.arcgis.com
    Updated Feb 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre d'enseignement Saint-Joseph de Chimay (2019). World Imagery - ESRI [Dataset]. https://hub.arcgis.com/maps/CESJ::world-imagery-esri/about
    Explore at:
    Dataset updated
    Feb 14, 2019
    Dataset authored and provided by
    Centre d'enseignement Saint-Joseph de Chimay
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  17. a

    3.7cm Resolution Metadata

    • hurricane-tx-arcgisforem.hub.arcgis.com
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 3.7cm Resolution Metadata [Dataset]. https://hurricane-tx-arcgisforem.hub.arcgis.com/datasets/10df2279f9684e4a9f6a7f08febac2a9
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esri
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  18. a

    3.7cm Resolution Metadata

    • livingatlas-dcdev.opendata.arcgis.com
    • unaids-teamdev.opendata.arcgis.com
    Updated Dec 12, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 3.7cm Resolution Metadata [Dataset]. https://livingatlas-dcdev.opendata.arcgis.com/datasets/esri::3-7cm-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esri
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  19. a

    World Imagery

    • hub.arcgis.com
    Updated Sep 16, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2013). World Imagery [Dataset]. https://hub.arcgis.com/maps/eaglegis::world-imagery/about
    Explore at:
    Dataset updated
    Sep 16, 2013
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  20. 9.6m Resolution Metadata

    • keep-cool-global-community.hub.arcgis.com
    Updated Dec 13, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 9.6m Resolution Metadata [Dataset]. https://keep-cool-global-community.hub.arcgis.com/datasets/esri::9-6m-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 13, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan

Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Hot Springs, Arkansas
Description

This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

Search
Clear search
Close search
Google apps
Main menu