Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.
The Digital Geologic-GIS Map of Saint Croix National Riverway and Vicinity, Minnesota and Wisconsin is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sacn_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sacn_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sacn_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sacn_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sacn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sacn_geology_metadata_faq.pdf). Please read the sacn_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Minnesota Geological Survey, Wisconsin Geological and Natural History Survey and National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sacn_geology_metadata.txt or sacn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Bedrock Geologic-GIS Map of Weir Farm National Historical Park and Vicinity, Connecticut is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wefa_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wefa_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wefa_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (wefa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (wefa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wefa_bedrock_geology_metadata_faq.pdf). Please read the wefa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Connecticut Geological and Natural History Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wefa_bedrock_geology_metadata.txt or wefa_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
NOT FOR PUBLIC DISTRIBUTION, FOR NPS USE ONLY. This dataset is composed of GIS data layers, Geologic Point Features (Sensitive) (CANYGPF_SENSITIVE), Mine Point Features (Sensitive) (CANYMIN_SENSITIVE), Mine Area Feature Boundaries (Sensitive) (CANYMAFA_SENSITIVE), Mine Area Features (Sensitive) (CANYMAF_SENSITIVE) and Hazard Point Features (Sensitive) (CANYHZP_SENSITIVE), deemed has sensitive data, and therefore should not be distributed outside the NPS or to non-approved users. This sensitive GIS Data is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (cany_geology_sensitive.gdb). The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (cany_geology_sensitive.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), and 2.) a Open Geospatial Consortium (OGC) geopackage. Upon request, the sensitive GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara at stephanie_o'meara@partner.nps.gov (see contact information below) to acquire the GIS data in shapefile format. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cany_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cany_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cany_geology_metadata_faq_sensitive.pdf). Please read the cany_geology_gis_readme_sensitive.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. Presently, a GRI Google Earth KMZ/KML product does not exist for this map. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Canyonlands Natural History Association and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cany_geology_metadata_sensitive.txt or cany_geology_metadata_faq_sensitive.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Web Soil Survey Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
https://data.syrgov.net/pages/termsofusehttps://data.syrgov.net/pages/termsofuse
Urban Tree Canopy Assessment. Created using LIDAR and other spatial analysis tools to identify and measure tree canopy in the landscape. This was a collaboration between the US Forest Service Northern Research Station (USFS), the University of Vermont Spatial Laboratory, and SUNY ESF. Includes all layers, but is too large to be viewed in ArcGIS Online. To view all of the layers, you can download the data and view this in either ArcGIS Pro or QGIS.Data DictionaryDescription source USDA Forest ServiceList of values Value 1 Description Tree CanopyValue 2 Description Grass/ShrubValue 3 Description Bare SoilValue 4 Description WaterValue 5 Description BuildingsValue 6 Description Roads/RailroadsValue 7 Description Other PavedField Class Alias Class Data type String Width 20Geometric objects Feature class name landcover_2010_syracusecity Object type complex Object count 7ArcGIS Feature Class Properties Feature class name landcover_2010_syracusecity Feature type Simple Geometry type Polygon Has topology FALSE Feature count 7 Spatial index TRUE Linear referencing FALSEDistributionAvailable format Name ShapefileTransfer options Transfer size 163.805Description Downloadable DataFieldsDetails for object landcover_2010_syracusecityType Feature Class Row count 7 Definition UTCField FIDAlias FID Data type OID Width 4 Precision 0 Scale 0Field descriptionInternal feature number.Description source ESRIDescription of valueSequential unique whole numbers that are automatically generated.Field ShapeAlias Shape Data type Geometry Width 0 Precision 0 Scale 0Field description Feature geometry.Description source ESRIDescription of values Coordinates defining the features.Field CodeAlias Code Data type Number Width 4Overview Description Metadata DetailsMetadata language English Metadata character set utf8 - 8 bit UCS Transfer FormatScope of the data described by the metadata dataset Scope name datasetLast update 2011-06-02ArcGIS metadata properties Metadata format ArcGIS 1.0 Metadata style North American Profile of ISO19115 2003Created in ArcGIS for the item 2011-06-02 16:48:35 Last modified in ArcGIS for the item 2011-06-02 16:44:43Automatic updates Have been performed Yes Last update 2011-06-02 16:44:43Item location history Item copied or moved 2011-06-02 16:48:35 From T:\TestSites\NY\Syracuse\Temp\landcover_2010_syracusecity To \T7500\F$\Export\LandCover_2010_SyracuseCity\landcover_2010_syracusecity
https://data.syrgov.net/pages/termsofusehttps://data.syrgov.net/pages/termsofuse
Urban Tree Canopy Assessment. This was created using the Urban Tree Canopy Syracuse 2010 (All Layers) file HERE.The data for this map was created using LIDAR and other spatial analysis tools to identify and measure tree canopy in the landscape. This was a collaboration between the US Forest Service Northern Research Station (USFS), the University of Vermont Spatial Laboratory, and SUNY ESF. Because the full map is too large to be viewed in ArcGIS Online, this has been reduced to a vector tile layer to allow it to be viewed online. To download and view the shapefiles and all of the layers, you can download the data HERE and view this in either ArcGIS Pro or QGIS.Data DictionaryDescription source USDA Forest ServiceList of values Value 1 Description Tree CanopyValue 2 Description Grass/ShrubValue 3 Description Bare SoilValue 4 Description WaterValue 5 Description BuildingsValue 6 Description Roads/RailroadsValue 7 Description Other PavedField Class Alias Class Data type String Width 20Geometric objects Feature class name landcover_2010_syracusecity Object type complex Object count 7ArcGIS Feature Class Properties Feature class name landcover_2010_syracusecity Feature type Simple Geometry type Polygon Has topology FALSE Feature count 7 Spatial index TRUE Linear referencing FALSEDistributionAvailable format Name ShapefileTransfer options Transfer size 163.805Description Downloadable DataFieldsDetails for object landcover_2010_syracusecityType Feature Class Row count 7 Definition UTCField FIDAlias FID Data type OID Width 4 Precision 0 Scale 0Field descriptionInternal feature number.Description source ESRIDescription of valueSequential unique whole numbers that are automatically generated.Field ShapeAlias Shape Data type Geometry Width 0 Precision 0 Scale 0Field description Feature geometry.Description source ESRIDescription of values Coordinates defining the features.Field CodeAlias Code Data type Number Width 4Overview Description Metadata DetailsMetadata language English Metadata character set utf8 - 8 bit UCS Transfer FormatScope of the data described by the metadata dataset Scope name datasetLast update 2011-06-02ArcGIS metadata properties Metadata format ArcGIS 1.0 Metadata style North American Profile of ISO19115 2003Created in ArcGIS for the item 2011-06-02 16:48:35 Last modified in ArcGIS for the item 2011-06-02 16:44:43Automatic updates Have been performed Yes Last update 2011-06-02 16:44:43Item location history Item copied or moved 2011-06-02 16:48:35 From T:\TestSites\NY\Syracuse\Temp\landcover_2010_syracusecity To \T7500\F$\Export\LandCover_2010_SyracuseCity\landcover_2010_syracusecity
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
The Virginia Geographic Information Network (VGIN) has coordinated the development and maintenance of a statewide Parcels data layer in conjunction with local governments across the Commonwealth. The Virginia Parcel dataset is aggregated as part of the VGIN Local Government Data Call update cycle. Localities are encouraged to submit data bi-annually and are included into the parcel dataset with their most recent geography.Attributes for these Virginia parcels are limited to locality identification and parcel id. Tax parcel boundaries have not been edge-matched across municipal boundaries but they are associated by local government FIPS and locality name.The boundaries are intended for cartographic use and spatial analysis only, and not for use as legal descriptions or property surveys. Not all localities within the Commonwealth of Virginia have confirmed a digital record for parcel geography or submit data with a bi-annual frequency.GDB Version: ArcGIS Pro 3.3Additional Resources:Shapefile DownloadREST EndpointVirginia Parcels: Local Schema Tables
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The nine-banded Armadillo (Dasypus novemcinctus) is the only species of Armadillo in the United States and alters ecosystems by excavating extensive burrows used by many other wildlife species. Relatively little is known about its habitat use or population densities, particularly in developed areas, which may be key to facilitating its range expansion. We evaluated Armadillo occupancy and density in relation to anthropogenic and landcover variables in the Ozark Mountains of Arkansas along an urban to rural gradient. Armadillo detection probability was best predicted by temperature (positively) and precipitation (negatively). Contrary to expectations, occupancy probability of Armadillos was best predicted by slope (negatively) and elevation (positively) rather than any landcover or anthropogenic variables. Armadillo density varied considerably between sites (ranging from a mean of 4.88 – 46.20 Armadillos per km2) but was not associated with any environmental or anthropogenic variables. Methods Site Selection Our study took place in Northwest Arkansas, USA, in the greater Fayetteville metropolitan area. We deployed trail cameras (Spypoint Force Dark (Spypoint Inc, Victoriaville, Quebec, Canada) and Browning Strikeforce XD cameras (Browning, Morgan, Utah, USA) over the course of two winter seasons, December 2020-March 2021, and November 2021-March 2022. We sampled 10 study sites in year one, and 12 study sites in year two. All study sites were located in the Ozark Mountains ecoregion in Northwest Arkansas. Sites were all Oak Hickory dominated hardwood forests at similar elevation (213.6 – 541 m). Devils Eyebrow and ONSC are public natural areas managed by the Arkansas Natural heritage Commission (ANHC). Devil’s Den and Hobbs are managed by the Arkansas state park system. Markham Woods (Markham), Ninestone Land Trust (Ninestone) and Forbes, are all privately owned, though Markham has a publicly accessible trail system throughout the property. Lake Sequoyah, Mt. Sequoyah Woods, Kessler Mountain, Lake Fayetteville, and Millsaps Mountain are all city parks and managed by the city of Fayetteville. Lastly, both Weddington and White Rock are natural areas within Ozark National Forest and managed by the U.S. Forest Service. We sampled 5 sites in both years of the study including Devils Eyebrow, Markham Hill, Sequoyah Woods, Ozark Natural Science Center (ONSC), and Kessler Mountain. We chose our study sites to represent a gradient of human development, based primarily on Anthropogenic noise values (Buxton et al. 2017, Mennitt and Fristrup 2016). We chose open spaces that were large enough to accommodate camera trap research, as well as representing an array of anthropogenic noise values. Since anthropogenic noise is able to permeate into natural areas within the urban interface, introducing human disturbance that may not be detected by other layers such as impervious surface and housing unit density (Buxton et al. 2017), we used dB values for each site as an indicator of the level of urbanization. Camera Placement We sampled ten study sites in the first winter of the study. At each of the 10 study sites, we deployed anywhere between 5 and 15 cameras. Larger study areas received more cameras than smaller sites because all cameras were deployed a minimum of 150m between one another. We avoided placing cameras on roads, trails, and water sources to artificially bias wildlife detections. We also avoided placing cameras within 15m of trails to avoid detecting humans. At each of the 12 study areas we surveyed in the second winter season, we deployed 12 to 30 cameras. At each study site, we used ArcGIS Pro (Esri Inc, Redlands, CA) to delineate the trail systems and then created a 150m buffer on each side of the trail. We then created random points within these buffered areas to decide where to deploy cameras. Each random point had to occur within the buffered areas and be a minimum of 150m from the next nearest camera point, thus the number of cameras at each site varied based upon site size. We placed all cameras within 50m of the random points to ensure that cameras were deployed on safe topography and with a clear field of view, though cameras were not set in locations that would have increased animal detections (game trails, water sources, burrows etc.). Cameras were rotated between sites after 5 or 10 week intervals to allow us to maximize camera locations with a limited number of trail cameras available to us. Sites with more than 25 cameras were active for 5 consecutive weeks while sites with fewer than 25 cameras were active for 10 consecutive weeks. We placed all cameras on trees or tripods 50cm above ground and at least 15m from trails and roads. We set cameras to take a burst of three photos when triggered. We used Timelapse 2.0 software (Greenberg et al. 2019) to extract metadata (date and time) associated with all animal detections. We manually identified all species occurring in photographs and counted the number of individuals present. Because density estimation requires the calculation of detection rates (number of Armadillo detections divided by the total sampling period), we wanted to reduce double counting individuals. Therefore, we grouped photographs of Armadillos into “episodes” of 5 minutes in length to reduce double counting individuals that repeatedly triggered cameras (DeGregorio et al. 2021, Meek et al. 2014). A 5 min threshold is relatively conservative with evidence that even 1-minute episodes adequately reduces double counting (Meek et al. 2014). Landcover Covariates To evaluate occupancy and density of Armadillos based on environmental and anthropogenic variables, we used ArcGIS Pro to extract variables from 500m buffers placed around each camera (Table 2). This spatial scale has been shown to hold biological meaning for Armadillos and similarly sized species (DeGregorio et al. 2021, Fidino et al. 2016, Gallo et al. 2017, Magle et al. 2016). At each camera, we extracted elevation, slope, and aspect from the base ArcGIS Pro map. We extracted maximum housing unit density (HUD) using the SILVIS housing layer (Radeloff et al. 2018, Table 2). We extracted anthropogenic noise from the layer created by Mennitt and Fristrup (2016, Buxton et al. 2017, Table 2) and used the “L50” anthropogenic sound level estimate, which was calculated by taking the difference between predicted environmental noise and the calculated noise level. Therefore, we assume that higher levels of L50 sound corresponded to higher human presence and activity (i.e. voices, vehicles, and other sources of anthropogenic noise; Mennitt and Fristrup 2016). We derived the area of developed open landcover, forest area, and distance to forest edge from the 2019 National Land Cover Database (NLDC, Dewitz 2021, Table 2). Developed open landcover refers to open spaces with less than 20% impervious surface such as residential lawns, cemeteries, golf courses, and parks and has been shown to be important for medium-sized mammals (Gallo et al. 2017, Poessel et al. 2012). Forest area was calculated by combing all forest types within the NLCD layer (deciduous forest, mixed forest, coniferous forest), and summarizing the total area (km2) within the 500m buffer. Distance to forest edge was derived by creating a 30m buffer on each side of all forest boundaries and calculating the distance from each camera to the nearest forest edge. We calculated distance to water by combining the waterbody and flowline features in the National Hydrogeography Dataset (U.S. Geological Survey) for the state of Arkansas to capture both permanent and ephemeral water sources that may be important to wildlife. We measured the distance to water and distance to forest edge using the geoprocessing tool “near” in ArcGIS Pro which calculates the Euclidean distance between a point and the nearest feature. We extracted Average Daily Traffic (ADT) from the Arkansas Department of Transportation database (Arkansas GIS Office). The maximum value for ADT was calculated using the Summarize Within tool in ArcGIS Pro. We tested for correlation between all covariates using a Spearman correlation matrix and removed any variable with correlation greater than 0.6. Pairwise comparisons between distance to roads and HUD and between distance to forest edge and forest area were both correlated above 0.6; therefore, we dropped distance to roads and distance to forest edge from analyses as we predicted that HUD and forest area would have larger biological impacts on our focal species (Kretser et al. 2008). Occupancy Analysis In order to better understand habitat associations while accounting for imperfect detection of Armadillos, we used occupancy modeling (Mackenzie et al. 2002). We used a single-species, single-season occupancy model (Mackenzie et al. 2002) even though we had two years of survey data at 5 of the study sites. We chose to do this rather than using a multi-season dynamic occupancy model because most sites were not sampled during both years of the study. Even for sites that were sampled in both years, cameras were not placed in the same locations each year. We therefore combined all sampling into one single-season model and created unique site by year combinations as our sampling locations and we used year as a covariate for analysis to explore changes in occupancy associated with the year of study. For each sampling location, we created a detection history with 7 day sampling periods, allowing presence/absence data to be recorded at each site for each week of the study. This allowed for 16 survey periods between 01 December 2020, and 11 March 2021 and 22 survey periods between 01 November 2021 and 24 March 2022. We treated each camera as a unique survey site, resulting in a total of 352 sites. Because not all cameras were deployed at the same time and for the same length of time, we used a staggered entry approach. We used a multi-stage fitting approach in which we
R, Spatstat, Excel
The StoryMap presents an immersive, interactive collection with maps, videos, images, and other media providing historical and physical geography information for three routes, all starting from Tempe and ending in different areas of Arizona: Strawberry, Sedona, and Lake Havasu City. The rationale for this is so that international or out-of-state students at Arizona State University (ASU) can have a repository of interesting places they can visit and explore to make the most of their stay at ASU. This is also useful for people who have lived in Tempe all their lives and are looking for ideas to explore other parts of Arizona.All static maps were created in ArcGIS Pro and feature a custom topographic basemap created using the ArcGIS Vector Style Editor. Interactive maps were developed with ArcGIS Online and graphics were created with the Canva design software.
https://data.syrgov.net/pages/termsofusehttps://data.syrgov.net/pages/termsofuse
Urban Tree Canopy Assessment. This was created using the Urban Tree Canopy Syracuse 2010 (All Layers) file HERE.The data for this map was created using LIDAR and other spatial analysis tools to identify and measure tree canopy in the landscape. This was a collaboration between the US Forest Service Northern Research Station (USFS), the University of Vermont Spatial Laboratory, and SUNY ESF. Because the full map is too large to be viewed in ArcGIS Online, this has been reduced to a vector tile layer to allow it to be viewed online. To download and view the shapefiles and all of the layers, you can download the data HERE and view this in either ArcGIS Pro or QGIS.Data DictionaryDescription source USDA Forest ServiceList of values Value 1 Description Tree CanopyValue 2 Description Grass/ShrubValue 3 Description Bare SoilValue 4 Description WaterValue 5 Description BuildingsValue 6 Description Roads/RailroadsValue 7 Description Other PavedField Class Alias Class Data type String Width 20Geometric objects Feature class name landcover_2010_syracusecity Object type complex Object count 7ArcGIS Feature Class Properties Feature class name landcover_2010_syracusecity Feature type Simple Geometry type Polygon Has topology FALSE Feature count 7 Spatial index TRUE Linear referencing FALSEDistributionAvailable format Name ShapefileTransfer options Transfer size 163.805Description Downloadable DataFieldsDetails for object landcover_2010_syracusecityType Feature Class Row count 7 Definition UTCField FIDAlias FID Data type OID Width 4 Precision 0 Scale 0Field descriptionInternal feature number.Description source ESRIDescription of valueSequential unique whole numbers that are automatically generated.Field ShapeAlias Shape Data type Geometry Width 0 Precision 0 Scale 0Field description Feature geometry.Description source ESRIDescription of values Coordinates defining the features.Field CodeAlias Code Data type Number Width 4Overview Description Metadata DetailsMetadata language English Metadata character set utf8 - 8 bit UCS Transfer FormatScope of the data described by the metadata dataset Scope name datasetLast update 2011-06-02ArcGIS metadata properties Metadata format ArcGIS 1.0 Metadata style North American Profile of ISO19115 2003Created in ArcGIS for the item 2011-06-02 16:48:35 Last modified in ArcGIS for the item 2011-06-02 16:44:43Automatic updates Have been performed Yes Last update 2011-06-02 16:44:43Item location history Item copied or moved 2011-06-02 16:48:35 From T:\TestSites\NY\Syracuse\Temp\landcover_2010_syracusecity To \T7500\F$\Export\LandCover_2010_SyracuseCity\landcover_2010_syracusecity
This web map contains numerous layers related to the North Coast region's fire history, vegetation, administrative boundaries, etc. It is a useful webmap for context to those planning fuel treatment projects or other land management activities.You can use the webmap in a browser, or open the webmap in ArcGIS Pro (see link on upper right of this screen).
Web Soil Survey Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
General IssuesArea of Interest and Quick NavigationInteractive MapSoil Data ExplorerPrintable Maps and ReportsData DownloadsWeb Soil Survey Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
You can access context-specific online help throughout Web Soil Survey, by clicking the question-mark icon. This opens up help for the particular feature or group of features where the icon is located. When you open a help item, the question-mark icon turns upside-down. To close the help item, you can click the upside-down question-mark icon. Or click the Close button at the upper right of the open help item. Many help items are divided into sections, which can be opened and closed. To open a closed section, click the plus-sign icon. To close an open section, click the minus-sign icon.Web Soil Survey Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
How to select SSURGO data for download from Web Soil SurveyWeb Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
Brochure on basics of using Web Soil Survey. Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.