Facebook
TwitterLearn the building blocks of a query expression and how to select features that meet one or more attribute criteria.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
Twitter*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities. Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: May 7, 2025 This layer is derived from the May 7, 2025 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 94 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 94 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel. Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Data DictionaryMaking a copy of your area of interest using copyraster in arcgis pro will copy the layer's attribute table to your network alongside the local output raster. The raster attribute table in the copied raster will contain the flood zone, zone subtype, and special flood hazard area true/false flag which corresponds to each value in the layer for your area of interest. For your convienence, we also included a table in CSV format in the box below as a data dictionary you can use as an index to every value in the layer. Value,FLD_ZONE,ZONE_SUBTY,SFHA_TF 2,A,, 3,A,,F 4,A,,T 5,A,,T 6,A,,T 7,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 8,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 9,A,ADMINISTRATIVE FLOODWAY,T 10,A,COASTAL FLOODPLAIN,T 11,A,FLOWAGE EASEMENT AREA,T 12,A99,,T 13,A99,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 14,AE,,F 15,AE,,T 16,AE,,T 17,AE,,T 18,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 19,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 20,AE,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",T 21,AE,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",T 22,AE,ADMINISTRATIVE FLOODWAY,T 23,AE,AREA OF SPECIAL CONSIDERATION,T 24,AE,COASTAL FLOODPLAIN,T 25,AE,COLORADO RIVER FLOODWAY,T 26,AE,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 27,AE,COMMUNITY ENCROACHMENT,T 28,AE,COMMUNITY ENCROACHMENT AREA,T 29,AE,DENSITY FRINGE AREA,T 30,AE,FLOODWAY,T 31,AE,FLOODWAY CONTAINED IN CHANNEL,T 32,AE,FLOODWAY CONTAINED IN STRUCTURE,T 33,AE,FLOWAGE EASEMENT AREA,T 34,AE,RIVERINE FLOODWAY IN COMBINED RIVERINE AND COASTAL ZONE,T 35,AE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 36,AE,STATE ENCROACHMENT AREA,T 37,AH,,T 38,AH,,T 39,AH,FLOODWAY,T 40,AO,,T 41,AO,COASTAL FLOODPLAIN,T 42,AO,FLOODWAY,T 43,AREA NOT INCLUDED,,F 44,AREA NOT INCLUDED,,T 45,AREA NOT INCLUDED,,U 46,D,,F 47,D,,T 48,D,AREA WITH FLOOD RISK DUE TO LEVEE,F 49,OPEN WATER,,F 50,OPEN WATER,,T 51,OPEN WATER,,U 52,V,,T 53,V,COASTAL FLOODPLAIN,T 54,VE,,T 55,VE,,T 56,VE,COASTAL FLOODPLAIN,T 57,VE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 58,X,,F 59,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,F 60,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,T 61,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,U 62,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,F 63,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,F 64,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COASTAL ZONE,F 65,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COMBINED RIVERINE AND COASTAL ZONE,F 66,X,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",F 67,X,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",F 68,X,1 PCT DEPTH LESS THAN 1 FOOT,F 69,X,1 PCT DRAINAGE AREA LESS THAN 1 SQUARE MILE,F 70,X,1 PCT FUTURE CONDITIONS,F 71,X,1 PCT FUTURE CONDITIONS CONTAINED IN STRUCTURE,F 72,X,"1 PCT FUTURE CONDITIONS, COMMUNITY ENCROACHMENT",F 73,X,"1 PCT FUTURE CONDITIONS, FLOODWAY",F 74,X,"1 PCT FUTURE IN STRUCTURE, COMMUNITY ENCROACHMENT",F 75,X,"1 PCT FUTURE IN STRUCTURE, FLOODWAY",F 76,X,AREA OF MINIMAL FLOOD HAZARD, 77,X,AREA OF MINIMAL FLOOD HAZARD,F 78,X,AREA OF MINIMAL FLOOD HAZARD,T 79,X,AREA OF MINIMAL FLOOD HAZARD,U 80,X,AREA OF SPECIAL CONSIDERATION,F 81,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,F 82,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 83,X,FLOWAGE EASEMENT AREA,F 84,X,1 PCT FUTURE CONDITIONS,T 85,AH,COASTAL FLOODPLAIN,T 86,AE,,U 87,AE,FLOODWAY,F 88,X,AREA WITH REDUCED FLOOD HAZARD DUE TO ACCREDITED LEVEE SYSTEM,F 89,X,530,F 90,VE,100,T 91,AE,100,T 92,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO LEVEE SYSTEM,T 93,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO NON-ACCREDITED LEVEE SYSTEM,T 94,A,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 250,AREA NOT INCLUDED,Not Mapped by FEMA, Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterNOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2012 moose seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.
Facebook
TwitterThis dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Quick Attribute Calculator v.1.0 is a toolbar developed for use with ArcGIS 9.3 on Windows XP. It enables a user to select an attribute from a drop-down list and change the value of a sub-set for bulk updates.
Facebook
TwitterNOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2012 mountain goat seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.
Facebook
TwitterNOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2016 pronghorn antelope seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.
Facebook
TwitterPLEASE NOTE: If choosing the Download option of "Spreadsheet" the field PIN is reformatted to a number - you will need to format it as a 10 character text string with leading zeros to join this data with data from King County.King County Assessor data has been summarized to the tax parcel identification number (PIN) and City of Seattle spatial overlay data has been assigned through geographic overlay processes. This data is updated periodically and is used to support the analytical and reporting functions of the City of Seattle long-range and policy planning office.The table includes attribute data from the King County Assessor as well as spatial overlay data for various City of Seattle reporting geographies. These geographic attributes are assigned as "majority rules" by land area in cases where multiple geographies span a single tax parcel.KCA tax parcels are created by King County for property tax assessment and collection and may not match development sites as defined by the City of Seattle (single buildings may span multiple tax parcels), may be stacked on top of each other to represent undivided interest and vertical parcels, or may be made up of several sites that are not contiguous. Every effort is made to accurately summarize key tax parcel attributes to a single PIN. Attributes include parcel centroid locations in latitude/longitude and Washington State Plane X,Y. To get polygon representation of the data please see King County's open data page for parcels and join this table through the PIN field. Please be aware that the King County Assessor site address is not a postal address and may not match other address sources for the same property such as postal, utility billing, and permitting.See the detailed data dictionary for more information.
Facebook
TwitterThe data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.
Facebook
TwitterNOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2018 elk seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges were originally digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterNOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2012 bighorn sheep crucial seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.
Facebook
TwitterAbstract Landslides are damaging and deadly, and they occur in every U.S. state. However, our current ability to understand landslide hazards at the national scale is limited, in part because spatial data on landslide occurrence across the U.S. varies greatly in quality, accessibility, and extent. Landslide inventories are typically collected and maintained by different agencies and institutions, usually within specific jurisdictional boundaries, and often with varied objectives and information attributes or even in disparate formats. The purpose of this data release is to provide an openly accessible, centralized map of existing information about landslide occurrence across the entire U.S. This data release is an update of previous versions 1 (Jones and others, 2019) and 2 (Belair and others, 2022). Changes relative to version 2 are summarized in us_ls_v3_changes.txt. It provides an integrated database of the landslides from these inventories (refer to US_Landslide_v3_gpkg) with a selection of uniform attributes, including links to the original digital inventory files (whenever available) (“Inv_URL”). The data release includes digital inventories created by both USGS and non-USGS authors. The original inventory is denoted by an abbreviation in the “Inventory” attribute. The full citation for each abbreviation can be found in us_ls_v3_references.csv. The date of the landslide event is included as a minimum and maximum (“Date_Min” and “Date_Max”) to accommodate events that happen within a range of dates. The date value is inherently difficult to interpret or discern due to the nature of landsliding, where some landslides move for long periods of time or move intermittently, and some areas can exhibit multiple landslide events. To preserve the constituent inventories as much as possible, we include all entries even if they are not considered landslides, such as “gullies” or “avalanche chutes.” We include a landslide type attribute when that information is available (“LS_Type”). The landslide classification system used in the original inventories is not always known or stated in the metadata, but many mapping entities use the schema from Cruden and Varnes (1996) or the updated schema from Hungr and others (2014). Given the wide range of landslide information sources in this data compilation, we provide an attribute to assess the relative confidence in the characterization of the _location and extent of each landslide (entry) (“Confidence”). The confidence level reflects the resolution and quality of input data, as well as the method used for identification and mapping. This confidence does not reflect a formal accuracy assessment of field attributes. Relative to the previous data releases (version 1 and 2), this update (v3) includes more inventories, updated confidence rules, a new landslide type attribute, a new unique identifier (“USGS_ID”), new machine-readable date fields, and an ancillary database containing all fields from the original inventories (refer to US_Landslide_v3_ancillary). Please contact gs-haz_landslides_inventory@usgs.gov for more information on how to contribute additional inventories to this community effort. When possible, please cite the constituent inventories as well as this data release. This data release includes: (1) a landslide point file and polygon file in multiple forms (US_Landslide_v3_gpkg, US_Landslide_v3_shp, US_Landslide_v3_csv), (2) an ancillary database with original fields (US_Landslide_v3_ancillary), (3) a spreadsheet that summarizes the confidence rules, their justification, and any extra analyses (us_ls_v3_analyses.csv), (4) a summary file of the changes made between version 2 and version 3 (us_ls_v3_changes.txt), (5) a file containing the references of the constituent inventories (us_ls_v3_references.csv), (6) and a readme (README.txt). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Data fields Field Names Definitions USGS_ID Unique USGS identifier for each landslide entry. Date_Min Minimum possible date of landslide occurrence. If date is known to the day, Date_Min will have a value while Date_Max is empty. Time zone is assumed to be local, except for Inventories ‘USGS Earthquake-Triggered Ground Failure’ and ‘USGS Seismogenic Mass Movements’ which are in UTC. Date_Max Maximum possible date of landslide occurrence. If date is known to the day, Date_Max will be empty while Date_Min has a value. Time zone is assumed to be local, except for Inventories ‘USGS Earthquake-Triggered Ground Failure’ and ‘USGS Seismogenic Mass Movements’ which are in UTC. Fatalities Number of fatalities caused by landslide event. Confidence Confidence in landslide (entry) extent, nature, and _location. LS_Type Landslide (entry) type. Classification schema of original inventories is often not specified. Inventory Name of original source inventory. Inv_URL URL or link to original source inventory. Info_Source Information source or sub-layer from original source inventory. Notes Unformatted notes field, includes additional information. Lat_N Latitude of point or polygon centroid in WGS 1984 Lon_W Longitude of point or polygon centroid in WGS 1984 Confidence attributes Confidence Definitions 1 Possible landslide (feature) in the area 2 Probable landslide (feature) in the area 3 Likely landslide (feature) at or near this _location 5 Moderate confidence in extent or nature of landslide (feature) at this _location 8 High confidence in extent or nature of landslide (feature) References Belair, G.M., Jones, E.S., Slaughter, S.L., and Mirus, B.B., 2022, Landslide Inventories across the United States version 2: U.S. Geological Survey data release, https://doi.org/10.5066/P9FZUX6N. Cruden, D.M. and Varnes, D.J., 1996, Landslide Types and Processes, in Turner, K.A. and Schuster R. L., eds., Landslides Investigation and Mitigation: Transportation Research Board, U.S. National Research Council Special Report 247, U.S. National Academy of Sciences, Chapter 3, p. 36-75. ESRI, 2023, ArcGIS Pro (Version 3.1.3), Redlands, CA: Environmental Systems Research Institute, Retrieved from https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources. Hungr, O., Leroueil, S., and Picarelli, L., 2014, The Varnes classification of landslide types, an update, Landslides, 11(2), p. 167-194, https://doi.org/10.1007/s10346-013-0436-y. Jones, E.S., Mirus, B.B, Schmitt, R.G., Baum, R.L., Burns, W.J., Crawford, M., Godt, J.W., Kirschbaum, D.B., Lancaster, J.T., Lindsey, K.O., McCoy, K.E., Slaughter, S., and Stanley, T.A., 2019, Landslide Inventories across the United States: U.S. Geological Survey data release, https://doi.org/10.5066/P9E2A37P. Python Software Foundation, 2023, Python Language Reference, version 3.9, Retrieved from http://www.python.org. QGIS.org, 2022, QGIS Geographic Information System (Version 3.28.4-Firenze), QGIS Association, Retrieved from http://www.qgis.org.
Facebook
TwitterOverview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.
Facebook
TwitterThis data has been clipped from the USA Critical Habitat layer on ArcGIS Living Atlas of the World. It is intended for Esri tutorial purposes only and may not reflect the current state of critical habitat. Use the USA Critical Habitat layer for authoritative data.In the United States, species in danger of extinction are protected by the Endangered Species Act. As part of these protections, the US Fish and Wildlife Service can designate critical habitat. Activities that are carried out, authorized, or funded by the federal government that are likely to adversely modify or destroy critical habitat are generally prohibited by the Endangered Species Act.Because the Endangered Species Act prohibits federal actions that degrade critical habitat, limitations may be placed on land management and other projects. Proposed federal actions that may adversely modify or destroy critical habitat require that the agency or private entity proposing the action consult with the appropriate regulatory agency (US Fish and Wildlife Service or the National Oceanic and Atmospheric Administration).The consultation and permitting process often relies heavily on GIS to organize, analyze, and display key information. This layer provides the information necessary to begin a landscape assessment of the distribution of critical habitat.Dataset SummaryPhenomenon Mapped: Critical Habitat for Threatened and Endangered species. Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, and the Northern Mariana IslandsVisible Scale: The data is visible at all scales but draws best at scales larger than 1: 2,000,000Source: U.S. Fish and Wildlife ServicePublication Date: June 14, 2019This layer displays critical habitat data (June 14, 2019) from the U.S. Fish and Wildlife Service (USFWS). The service contains 2 layers, lines and polygons, which correspond to the two shape files included in the original data. The source data for this layer are available here. Esri modified the attributes of these data to facilitate their use. A Species Type field was added and populated denoting the taxonomic group of each species and a field was added to link to the USFWS species profile for each species. The scientific and common name fields were edited to standardize capitalization and remove special characters. Several fields that did not contain data were removed. Attributes included in this layer are: Common NameScientific NameSpecies TypeSpecies CodePopulation CodeCritical Habitat Status - Final or ProposedFederal Register Publication Citation - The pop-ups for this field are pre-configured to link to the Federal Register search page for this value.Federal Register Publication DateListing Status - Threatened, Endangered, Proposed Threatened, or Proposed EndangeredLink to USFWS Species ProfileWhat can you do with this layer? This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.The feature service is symbolized on the status of the critical habitat for each species. In ArcGIS Online you can change symbology.The data can also be filtered. For example selecting common name as the field and northern spotted owl as the value in the filter will return a map displaying only northern spotted owl critical habitat.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of the description page.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterDESCRIPTION OF ORIGINAL PARCELS DATASET HOSTED BY NJ OGIS: The statewide composite of parcels (cadastral) data for New Jersey is made available here in Web Mercator projection (3857.) It was developed during the Parcels Normalization Project in 2008-2014 by the NJ Office of Information Technology, Office of GIS (NJOGIS). The normalized parcels data are compatible with the New Jersey Department of Treasury MOD-IV system currently used by Tax Assessors and selected attributes from that system have been joined with the parcels in this dataset. Please see the NJGIN parcel dataset page for additional resources, including a downloadable zip file of the statewide data: https://njgin.nj.gov/njgin/edata/parcels/index.html#!/This composite of parcels data serves as one of New Jersey's framework GIS data sets. Stewardship and maintenance of the data will continue to be the purview of county and municipal governments, but the statewide composite will be maintained by NJOGIS.Parcel attributes were normalized to a standard structure, specified in the NJ GIS Parcel Mapping Standard, to store parcel information and provide a PIN (parcel identification number) field that can be used to match records with suitably-processed property tax data. The standard is available for viewing and download at https://njgin.state.nj.us/oit/gis/NJ_NJGINExplorer/docs/NJGIS_ParcelMappingStandardv3.2.pdf. The PIN also can be constructed from attributes available in the MOD-IV Tax List Search table (see below).This dataset includes a large number of additional attributes from matched MOD-IV records; however, not all MOD-IV records match to a parcel, for reasons explained elsewhere in this metadata record. The statewide property tax table, including all MOD-IV records, is available as a separate download "MOD-IV Tax List Search Plus Database of New Jersey." Users who need only the parcel boundaries with limited attributes may obtain those from a separate download "Parcels Composite of New Jersey ". Also available separately are countywide parcels and tables of property ownership and tax information extracted from the NJ Division of Taxation database.The polygons delineated in this dataset do not represent legal boundaries and should not be used to provide a legal determination of land ownership. Parcels are not survey data and should not be used as such. Please note that these parcel datasets are not intended for use as tax maps. They are intended to provide reasonable representations of parcel boundaries for planning and other purposes. Please see Data Quality / Process Steps for details about updates to this composite since its first publication.
Facebook
TwitterLearn the building blocks of a query expression and how to select features that meet one or more attribute criteria.