55 datasets found
  1. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Dec 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2021). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A70b5bfd9d450fc4266770c000c1d32e0e93fd17ff6e597f4c755dd7d46a8a2db
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. Missouri Raster Data

    • figshare.com
    tiff
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melanie Boudreau (2023). Missouri Raster Data [Dataset]. http://doi.org/10.6084/m9.figshare.23646456.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Melanie Boudreau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rasters assocaited with elevation (from the National elevation dataset), slope (created from the elevation dataset using ArcGIS), a Shannon diversity index as a metric of landscape fragmentation (created from the forest/shrub layer using Fragstats), distance to all roads (created in ArcGIS using a road TIGER shapefile), distance to forest/shrubs (created using NLCD 2016 data), human population density (created using data from the US Census Bureau). All rasters are at a 90m resolution.

  4. a

    PrepareRastersforMaxent

    • hub.arcgis.com
    • gblel-dlm.opendata.arcgis.com
    Updated Jan 8, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Nevada, Reno (2015). PrepareRastersforMaxent [Dataset]. https://hub.arcgis.com/content/11bf7e689c92413f8d31933b3e1f56b1
    Explore at:
    Dataset updated
    Jan 8, 2015
    Dataset authored and provided by
    University of Nevada, Reno
    Description

    Maxent software (http://www.cs.princeton.edu/~schapire/maxent) is frequently used for presence-only species distribution modeling. Maxent requires, however, that input ASCII raster files be aligned with one another and have the same spatial extent. This tool pre-processes raster data in preparation for Maxent modeling to ensure that all rasters have the same extent, same cell size, and aren't missing data. There are two version of this geoprocessing modeling. The advanced version is for the ArcGIS Advanced license. The basic version is the the ArcGIS Advanced license. Both versions require Spatial Analyst. The difference between the two is that the advanced version creates a polygon shapefile that shows the difference between the template raster and the processed raster. Ideally, this should generate a polygon with empty output, but if it doesn't you can use it to diagnose problems. The tool first resamples the raster, then uses a focalmean (3x3 and 5x5) to fill gaps, and mosaics the resampled, 3x3, and 5x5 rasters together, and converts to ASCII.Recommended citation format: Dilts, T.E. (2015) Prepare Rasters for Maxent Tool for ArcGIS 10.1. University of Nevada Reno. Available at: http://www.arcgis.com/home/item.html?id=11bf7e689c92413f8d31933b3e1f56b1

  5. Primary model outputs (packaged datasets) - A landscape connectivity...

    • catalog.data.gov
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Primary model outputs (packaged datasets) - A landscape connectivity analysis for the coastal marten (Martes caurina humboldtensis) [Dataset]. https://catalog.data.gov/dataset/primary-model-outputs-packaged-datasets-a-landscape-connectivity-analysis-for-the-coastal-
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    This packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.

  6. a

    Natural earth

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 1, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of California, Santa Barbara (2009). Natural earth [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/ucsb::natural-earth
    Explore at:
    Dataset updated
    Jan 1, 2009
    Dataset authored and provided by
    University of California, Santa Barbara
    Area covered
    Description

    Natural Earth is a public domain map data set available at 1:10m, 1:50m, and 1:110m scales, featuring vector and raster data. Primary authors: Tom Patterson and Nathaniel Vaughn Kelso. Vector data is in ESRI shapefile format and raster data is in TIFF format with a TFW world file. All data uses the Geographic projection, WGS84 datum.

  7. a

    Full Range Heat Anomalies - USA 2022

    • hub.arcgis.com
    • giscommons-countyplanning.opendata.arcgis.com
    Updated Mar 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Full Range Heat Anomalies - USA 2022 [Dataset]. https://hub.arcgis.com/datasets/26b8ebf70dfc46c7a5eb099a2380ee1d
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  8. c

    Research data supporting “Getting road expansion on the right track: a...

    • repository.cam.ac.uk
    zip
    Updated Oct 25, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Balmford, Andrew; Chen, Huafang; Phalan, Ben; Wang, Mingcheng; O’Connell, Christine; Tayleur, Cath; Xu, Jianchu (2016). Research data supporting “Getting road expansion on the right track: a framework for smart infrastructure planning in the Mekong” [Dataset]. http://doi.org/10.17863/CAM.6069
    Explore at:
    zip(9967829 bytes)Available download formats
    Dataset updated
    Oct 25, 2016
    Dataset provided by
    Apollo
    University of Cambridge
    Authors
    Balmford, Andrew; Chen, Huafang; Phalan, Ben; Wang, Mingcheng; O’Connell, Christine; Tayleur, Cath; Xu, Jianchu
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Mekong River
    Description

    Spatial data underlying the figures in Balmford et al. "Getting road expansion on the right track: a framework for smart infrastructure planning in the Mekong", for use in a Geographic Information System All raster and shapefile data have been derived from other datasets, and show metrics of environmental cost and food production benefit in the Mekong Basin, as defined by the Asian Development Bank as Vietnam, Lao PDR, Cambodia, Thailand, Myanmar, and Yunnan Province in China. Full details are given in the figure captions and text of the associated paper.

  9. Global 10 x 10-km grids suitable for use in IUCN Red List of Ecosystems...

    • figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Murray (2023). Global 10 x 10-km grids suitable for use in IUCN Red List of Ecosystems assessments (vector and raster format) [Dataset]. http://doi.org/10.6084/m9.figshare.4653439.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Nicholas Murray
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global 10 x 10-km grid files for use in assessing Criterion B of the IUCN Red List of Ecosystems. Each file consists of a global grid with 5086152 individually identified grid cells. Raster data. 10000m resolution. 32 Bit unsigned integer. World Cylindrical Equal Area. IMG format for use in ArcGIS, R, Erdas Imagine etc.Vector data. World Cylindrical Equal Area. Shapefile format.

  10. d

    Namoi bore analysis rasters

    • data.gov.au
    • researchdata.edu.au
    zip
    Updated Nov 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2019). Namoi bore analysis rasters [Dataset]. https://data.gov.au/dataset/22932dc2-0015-47db-8b67-6cd4b313ebf6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 19, 2019
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Namoi River
    Description

    Abstract The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This resource contains raster datasets created using ArcGIS to analyse groundwater levels in the Namoi subregion. Purpose These data layers were created in ArcGIS as part of the analysis to …Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This resource contains raster datasets created using ArcGIS to analyse groundwater levels in the Namoi subregion. Purpose These data layers were created in ArcGIS as part of the analysis to investigate surface water - groundwater connectivity in the Namoi subregion. The data layers provide several of the figures presented in the Namoi 2.1.5 Surface water - groundwater interactions report. Dataset History Extracted points inside Namoi subregion boundary. Converted bore and pipe values to Hydrocode format, changed heading of 'Value' column to 'Waterlevel' and removed unnecessary columns then joined to Updated_NSW_GroundWaterLevel_data_analysis_v01\NGIS_NSW_Bore_Join_Hydmeas_unique_bores.shp clipped to only include those bores within the Namoi subregion. Selected only those bores with sample dates between >=26/4/2012 and <31/7/2012. Then removed 4 gauges due to anomalous ref_pt_height values or WaterElev values higher than Land_Elev values. Then added new columns of calculations: WaterElev = TsRefElev - Water_Leve DepthWater = WaterElev - Ref_pt_height Ref_pt_height = TsRefElev - LandElev Alternatively - Selected only those bores with sample dates between >=1/5/2006 and <1/7/2006 2012_Wat_Elev - This raster was created by interpolating Water_Elev field points from HydmeasJune2012_only.shp, using Spatial Analyst - Topo to Raster tool. And using the alluvium boundary (NAM_113_Aquifer1_NamoiAlluviums.shp) as a boundary input source. 12_dw_olp_enf - Select out only those bores that are in both source files. Then using depthwater in Topo to Raster, with alluvium as the boundary, ENFORCE field chosen, and using only those bores present in 2012 and 2006 dataset. 2012dw1km_alu - Clipped the 'watercourselines' layer to the Namoi Subregion, then selected 'Major' water courses only. Then used the Geoprocessing 'Buffer' tool to create a polygon delineating an area 1km around all the major streams in the Namoi subregion. selected points from HydmeasJune2012_only.shp that were within 1km of features the WatercourseLines then used the selected points and the 1km buffer around the major water courses and the Topo to Raster tool in Spatial analyst to create the raster. Then used the alluvium boundary to truncate the raster, to limit to the area of interest. 12_minus_06 - Select out bores from the 2006 dataset that are also in the 2012 dataset. Then create a raster using depth_water in topo to raster, with ENFORCE field chosen to remove sinks, and alluvium as boundary. Then, using Map Algebra - Raster Calculator, subtract the raster just created from 12_dw_olp_enf Dataset Citation Bioregional Assessment Programme (2017) Namoi bore analysis rasters. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/7604087e-859c-4a92-8548-0aa274e8a226. Dataset Ancestors Derived From Bioregional Assessment areas v02 Derived From Gippsland Project boundary Derived From Bioregional Assessment areas v04 Derived From Upper Namoi groundwater management zones Derived From Natural Resource Management (NRM) Regions 2010 Derived From Bioregional Assessment areas v03 Derived From Victoria - Seamless Geology 2014 Derived From GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013 Derived From Bioregional Assessment areas v01 Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb) Derived From GEODATA TOPO 250K Series 3 Derived From NSW Catchment Management Authority Boundaries 20130917 Derived From Geological Provinces - Full Extent Derived From Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013

  11. Geospatial data for the Vegetation Mapping Inventory Project of Glacier...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Glacier National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-glacier-national-park
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes; (1) orthorectify, (2) digitize, and (3) database enhancement. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 12, using North American Datum of 1983 (NAD83). To produce a polygon vector coverage for use in GIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcInfo (Version 8.0.2, Environmental Systems Research Institute, Redlands, California). In ArcTools, we used the ArcScan utility to trace the polygon data and produce ArcInfo vector-based coverages. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the 78 individual coverages into a seamless map coverage of GNP and immediate environs. We synchronized polygons and attributes along the boundary between the GNP and WLNP map coverages. Although GNP and WLNP are two separate map coverages, they are seamless in the sense they edge tie perfectly in both polygon location and map attribute.

  12. w

    Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in...

    • data.wu.ac.at
    Updated Mar 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarvestMaster (2018). Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB) RegionalGridShapefilesAndRaster (1).zip [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/M2Q4ZWZhOTUtNjhmZS00NmJiLWJkZTEtOTQ5MGRmNjk1Njk4
    Explore at:
    Dataset updated
    Mar 6, 2018
    Dataset provided by
    HarvestMaster
    Area covered
    f12b175cce591b0b37a984092645480b5ec0db67
    Description

    This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS).

    This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain item description documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations.

    Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015.

    Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted.

    UPDATE: Newer version of the Thermal Quality Analysis has been added here: https://gdr.openei.org/submissions/879 (Also linked below) Newer version of the Combined Risk Factor Analysis has been added here: https://gdr.openei.org/submissions/880 (Also linked below) Regional Grid Shapefiles and Raster used in Thermal Quality Analysis task of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. Polygon (Fishnet2.shp and associated files), Point (Fishnet2_label.shp and associated files) and Raster grid (GridNAD.tif) are included, made using ArcGIS Create Fishnet tool.

    There is an associated file containing the ArcGIS Toolbox with the Regional Grid Models, (ArcGISToolbox_RegionalGridModels.zip) .

    The shapefiles, ArcGIS toolbox, and R script contained within these two .zip files were used to convert vector and raster files to the standardized 1 square km grid used in this project. The code is general enough to be used in other studies that may need to work on a standard grid. ArcGIS 10.1 or later is needed to use the models in the toolbox.

    Details regarding methods for seismic risk factor conversion (within the toolbox) may be found in the memo contained within the project final report entitled 14_GPFA-AB_SeismicRiskMapCreationMethods.pdf (Smith and Horowitz, 2015).

    The R script AddNewSeisFieldsFunctions.R implements some of the methods described in the memo.

    Details about all of the ArcGIS toolbox models may be found in the memo entitled 16_GPFA-AB_RiskAnalysisAndRiskFactorDescriptions.pdf (Whealton, et al., 2015). Some models have been given different names since the memo was written. These models have the former names listed next to the current model name in the list above.

  13. D

    Lamto GIS layer (raster dataset): Lamto reserve (Côte d'Ivoire) 1963...

    • dataverse.ird.fr
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; de la Souchère P; Badarello L; S. Konaté; de la Souchère P; Badarello L (2024). Lamto GIS layer (raster dataset): Lamto reserve (Côte d'Ivoire) 1963 vegetation cover, after original map by de la Souchère & Badarello (1969) [Dataset]. http://doi.org/10.23708/XCNQCS
    Explore at:
    application/zipped-shapefile(113195307), png(84127), png(288848), tiff(55323016)Available download formats
    Dataset updated
    Mar 12, 2024
    Dataset provided by
    DataSuds
    Authors
    R. Zaiss; R. Zaiss; J. Gignoux; J. Gignoux; S. Barot; S. Barot; S. Konaté; de la Souchère P; Badarello L; S. Konaté; de la Souchère P; Badarello L
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCShttps://dataverse.ird.fr/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.23708/XCNQCS

    Area covered
    Côte d'Ivoire
    Description

    This dataset holds the unpublished map “Carte physionomique des faciès savaniens de Lamto" drawn by de la Souchère; P. and Badarello, L. in 1969. We georeferenced the scanned paper map using ground control points derived from Google Maps. The dataset contains the scanned map, the ground control points and the raster layer of the georeferenced map.

  14. d

    Lunar Grid Reference System Rasters and Shapefiles

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-rasters-and-shapefiles
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

  15. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie; Zhu, Guang-Fu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Kunming Institute of Botany, Chinese Academy of Sciences
    Authors
    Liu, Jie; Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  16. d

    2018 LiDAR - Normalized Digital Surface Model

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). 2018 LiDAR - Normalized Digital Surface Model [Dataset]. https://catalog.data.gov/dataset/2018-lidar-normalized-digital-surface-model
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    Normalized Digital Surface Model - 1m resolution. The dataset contains the Normalized Digital Surface Model for the Washington Area. Voids exist in the data due to data redaction conducted under the guidance of the United States Secret Service. All lidar data returns and collected data were removed from the dataset based on the redaction footprint shapefile generated in 2017. This dataset provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The compressed GeoTIFF raster dataset is available under additional options when viewing downloads.

  17. m

    D1 2030 Hatch

    • gis.data.mass.gov
    • geo-massdot.opendata.arcgis.com
    • +3more
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts geoDOT (2023). D1 2030 Hatch [Dataset]. https://gis.data.mass.gov/datasets/MassDOT::d1-2030-hatch
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset authored and provided by
    Massachusetts geoDOT
    Area covered
    Description

    Flood Hatch ShapefilesIn addition to the three sets of rasters (Maximum Wave Heights, Water Surface Elevations, and DFEs) provided, separate shapefiles were also created to overlap and highlight special areas within the raster datasets produced for calculating DFEs. A flood hatch shapefile is not provided for every ACFEP level or for every region, but when it is provided, it encompasses the special areas for that level and region. The same hatch shapefile is applicable for all datatypes for the particular level and region. Flood hatch shapefiles encompass all areas of special values within the data rasters (including areas of 9999, 9998, and 9997 values). All regions have a 0.1% ACFEP level flood hatch shapefile because all 0.1% ACFEP rasters contain 9999 values.The flood hatch shapefiles contain individual polygons that describe the type of special area underlying that polygon’s spatial extent. For 9999 and 9998 values in the value rasters (water surface elevations, waves, and DFEs), the special hatched polygons will have the same extent of those values within those rasters. For 9997 values in the value rasters, the hatch polygon will always encompass the 9997 values, but may be larger in extent than just the location of those value cells. For these areas, water surface elevation, wave heights, and DFEs values may be provided, but they still represent a special zone.The Hatch polygons have 5 fields (Column headers) that describe each polygon within the shapefile. These fields include FID, Shape, Hatch_Type, Zones_txt, Hatch, and Hatch_Txt. The FID field contains an ID number for each polygon within that shapefile, while the Shape fieldlists the type of shapefile contained (polygon in all cases). The Hatch_Type field contains the numerical value that can be found within the value rasters (wave height, water surface, and DFE) underlying that polygon. Zones_txt and Hatch_txt are string type fields that contain descriptors of the polygon type, while the Hatch Field contains a numerical value for the type of hatching (1 for 0.1% Edge Zone, 2 for Wave Overtopping Zones, 3 for Dynamic Zone). The following table is an example of what a flood hatch file’s attribute table might look like.FIDShapeHatch_TypeZones_TxtHatchHatch_Txt0Polygon9999Shallow water flooding during extreme storms10.1% Edge Zone1Polygon9997Influenced by wave overtopping (incl. 9997 areas)2Wave Overtopping Zone2Polygon9998Dynamic Landform Areas3Dynamic ZoneSpecifically, the various hatch shapefiles can be defined as follows:• FID 0 Hatch Type – These represent areas of shallow water flooding during extreme storms. These are locations where flooding can only be expected during the most extreme events (> 1000-year return period) or where there are only minor flood depths (shallow flooding) during 1000-year return period AEP. These values only appear in 0.1% ACFEP level since they only occur at the very upper extent of extreme flooding. Water surface elevation values in these regions can be set to 0.1 foot above the site-specific land elevation to provide an estimate of the water surface elevation. Site-specific survey information may be needed to determine the land elevation. These hatch areas directly match areas with 9999 values within the rasters.• FID 1 Hatch Type – These represent wave overtopping zones. These hatch layers encompass the 9997 areas, but also include areas that have known values. Hatched areas of this type covering 9997 values would be expected to experience flooding caused by intermittent wave spray and overtopping only. Hatched areas of this type covering locations with values indicate that the flooding is caused by both direct sheet flow and wave overtopping. These hatched zones are provided for informational purposes by identifying zones that may require special design considerations for wave overtopping. Site-specific coastal processes analysis may also be required in these areas.• FID 2 Hatch Type – These represent areas where geomorphology is extremely dynamic and as such expected flooding may vary drastically. These values can appear in any ACFEP level. There are minimal locations of this type. These hatch areas directly match areas with 9998 values within the rasters.

  18. w

    Appalachian Basin Play Fairway Analysis: Improvements in 2016 to Thermal...

    • data.wu.ac.at
    zip
    Updated Jun 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarvestMaster (2018). Appalachian Basin Play Fairway Analysis: Improvements in 2016 to Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB) ThermalRiskFactorSupportingFiles_2016Only.zip [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/ODVlMDc1ZWYtOGU1Mi00MzRkLWFjNTYtODAwMTYzYzBkZjBk
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 19, 2018
    Dataset provided by
    HarvestMaster
    Area covered
    bf61e9c87c5c65f454df138d9bab5469191c8045
    Description

    This submission revises the analysis and products for Thermal Quality Analysis for the northern half of the Appalachian Basin (https://gdr.openei.org/submissions/638) This submission is one of five major parts of a Low Temperature Geothermal Play Fairway Analysis. Phase 1 of the project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This submission includes a subset of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the project. This subset is those contents that were improved upon during calendar year 2016. Figures are provided as examples of some shapefiles and rasters. See also: Final Report: Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (https://gdr.openei.org/submissions/899).

    The 2015 data submission should be visited to obtain:
    1) the regional standardized 1 square km grid used in the project as points (cell centers), polygons, and as a raster,
    2) the raw well data for the state well temperature databases, 3) the COSUNA section shapefile and formation thermal conductivities by state as *.xlsx files, 4) the sediment thickness map and 30 m Digital Elevation Model for the Appalachian Basin as GeoTIFF raster files, 5) the BHT correction sections shapefile and drilling fluid databases as *.csv files, 6) the unbuffered interpolation regions as shapefiles, 7) several 50 km buffered interpolation regions as shapefiles, 8) several gridded interpolation regions as raster files, 9) an R script for organizing the thermal data and running the local spatial outlier analysis, 10) shapefiles and rasters for the prediction, uncertainty, and cross validation of the temperature at 1.5 km, 2.5 km, and 3.5 km depth, 11) shapefiles and rasters for the prediction, uncertainty, and cross validation depth to 100 degrees C, 12) an ArcGIS toolbox for thermal risk factor models, 13) an ArcGIS model for extracting results specific to each county of interest, 14) thermal resource cross section plots, 15) the geothermal Play Fairways. This subset are those contents that were improved upon during calendar year 2016. Figures (.png) are provided as examples of some shapefiles and rasters.

    One ArcGIS toolbox has been updated: RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid. This toolbox contains item description documentation for each model within the toolbox, and for the toolbox itself. This submission also contains updates to four R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations, and 4) SortingWells.R for sorting the well data prior to the interpolation.

    Some file descriptions make reference to various 'memos'. These are contained within the final revised report submitted to the Geothermal Data Repository as Submission 899 (https://gdr.openei.org/submissions/899).

  19. G

    Snake River Plain Play Fairway Analysis Favorability Models

    • gdr.openei.org
    • data.openei.org
    • +1more
    website
    Updated Jun 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob DeAngelo; John W. Shervais; Jonathan M. Glen; Patick F. Dobson; Lee M. Liberty; Drew L. Siler; Ghanashyam Neupane; Dennis L. Newell; James P. Evans; Erika Gasperikova; Jared R. Peacock; Eric Sonnenthal; Dennis L. Nielson; Sabodh Garg; William D. Schermerhorn; Tait E. Earney; Jacob DeAngelo; John W. Shervais; Jonathan M. Glen; Patick F. Dobson; Lee M. Liberty; Drew L. Siler; Ghanashyam Neupane; Dennis L. Newell; James P. Evans; Erika Gasperikova; Jared R. Peacock; Eric Sonnenthal; Dennis L. Nielson; Sabodh Garg; William D. Schermerhorn; Tait E. Earney (2020). Snake River Plain Play Fairway Analysis Favorability Models [Dataset]. https://gdr.openei.org/submissions/1287
    Explore at:
    websiteAvailable download formats
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    Geothermal Data Repository
    Utah State University
    USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Geothermal Technologies Program (EE-4G)
    Authors
    Jacob DeAngelo; John W. Shervais; Jonathan M. Glen; Patick F. Dobson; Lee M. Liberty; Drew L. Siler; Ghanashyam Neupane; Dennis L. Newell; James P. Evans; Erika Gasperikova; Jared R. Peacock; Eric Sonnenthal; Dennis L. Nielson; Sabodh Garg; William D. Schermerhorn; Tait E. Earney; Jacob DeAngelo; John W. Shervais; Jonathan M. Glen; Patick F. Dobson; Lee M. Liberty; Drew L. Siler; Ghanashyam Neupane; Dennis L. Newell; James P. Evans; Erika Gasperikova; Jared R. Peacock; Eric Sonnenthal; Dennis L. Nielson; Sabodh Garg; William D. Schermerhorn; Tait E. Earney
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Snake River Plain
    Description

    This submission contains a link to two USGS data publications. Each data release contains all digital geographic data used and produced by the Snake River Plain Play Fairway Analysis for Phase 1 and Phase 2 (ArcGIS shapefiles and raster files) as well as the model processing script, tables, and documentation used to generate data outputs. Brief descriptions of data layers are in the metadata of GIS files. Greater detail is available in the Phase 1 and Phase 2 final reports (linked below). The citations for the favorability model data products are:

    Phase 1 DeAngelo, J., Shervais, J.W., Glen, J.M., Dobson, P.F., Liberty, L.M., Siler, D.L., Neupane, G., Newell, D.L., Evans, J.P., Gasperikova, E., Peacock, J.R., Sonnenthal, E., Nielson, D.L., Garg, S.K., Schermerhorn, W.D., and Earney, T.E., 2021, Snake River Plain Play Fairway Analysis Phase 1 Favorability Model (DE EE0006733): U.S. Geological Survey data release, https://doi.org/10.5066/P95EULTI.

    Phase 2 DeAngelo, J., Shervais, J.W., Glen, J.M., Dobson, P.F., Liberty, L.M., Siler, D.L., Neupane, G., Newell, D.L., Evans, J.P., Gasperikova, E., Peacock, J.R., Sonnenthal, E., Nielson, D.L., Garg, S.K., Schermerhorn, W.D., and Earney, T.E., 2021, Snake River Plain Play Fairway Analysis Phase 2 Favorability Model (DE EE0006733): U.S. Geological Survey data release, https://doi.org/10.5066/P9Y8MEZY.

  20. n

    Reduced-Resolution QuickBird Imagery and Related GIS Layers for Barrow,...

    • cmr.earthdata.nasa.gov
    • s.cnmilf.com
    • +3more
    not provided
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Reduced-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1386246137-NSIDCV0.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Dec 1, 2025
    Time period covered
    Aug 1, 2002 - Aug 2, 2002
    Area covered
    Description

    This data set contains reduced-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area 156.15° W - 157.07° W, 71.15° N - 71.41° N) and the Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitialGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.

    Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).

    The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest.

    Data are available either via FTP or on CD-ROM.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jacob Wise Calhoon (2021). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A70b5bfd9d450fc4266770c000c1d32e0e93fd17ff6e597f4c755dd7d46a8a2db

Test Resource for OGC Web Services

Explore at:
Dataset updated
Dec 5, 2021
Dataset provided by
Hydroshare
Authors
Jacob Wise Calhoon
Time period covered
Aug 6, 2020
Area covered
Description

This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

Search
Clear search
Close search
Google apps
Main menu