Facebook
TwitterMature Support Notice: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This web map contains the same layers as the 'Imagery with Labels' basemap that is available in the basemap gallery in the ArcGIS applications but also adds the World Transportation map serviceThe World Transportation map service shows streets, roads and highways and their names. When you zoom in to the highest level of detail the lines disappear and you just see the street names and road numbers. The 'Imagery with Labels' basemap contains the World Imagery map service and the World Boundaries and Places map service, so when you use that basemap you get boundaries and places, but you don't get streets and roads at small scales or street and road labels at large scale. So by adding the World Transportation map service into your map as well you get those too.Want to use this map as the basemap for your own web map? If you have not created your web map yet, simply open this map and then do Save As to save a copy of it as your own map, and then make changes to it like zooming in and adding more data. If you have already created your web map, open it and choose the Imagery With Labels basemap from the Basemap dropdown. Then add the World Transportation service into your map by searching for it. This 'Imagery with Labels and Transportation' web map shows you what this looks like. The World Transportation map service is designed to be drawn underneath the World Boundaries and Places map service, as you can see in this web map.In this web map, we have set the Transportation layer with partial transparency to make the transportation network less prominent relative to the imagery. You can manipulate the level of transparency that you use for the basemap and reference layers in the web maps that you create. You can do this in the layer properties of the layers in the map table of contents.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates. Tip: This web map is a useful general purpose map that you can link to from web pages, emails, social media, etc, and embed in your own web page. Just open the map and then choose the Share option. Like with any public map in ArcGIS Online, you don't need to have an ArcGIS Online account in order to share this map by linking or embedding. In addition, by adding extent parameters in the URL you use to link or embed the map, you can take users directly to particular locations. So anyone can immediately take advantage of this map on the web to show any location in the world without even being signed in to ArcGIS Online. See this help topic for more information. For example, here are some links that use extent parameters to open this map at some famous locations. Some of these specify a rectangular extent on the map to zoom to. Others specify a center point and a zoom level to zoom to:Grand Canyon, Arizona, USAGolden Gate, California, USATaj Mahal, Agra, IndiaVatican CityBronze age white horse, Uffington, UKUluru (Ayres Rock), AustraliaMachu Picchu, Cusco, PeruOkavango Delta, Botswana
Facebook
TwitterThe ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:Find a location of interest.View the maps.Compare the maps.Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location. Save the maps in an ArcGIS Online web map.
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.
Facebook
TwitterThe way to access Layers Quickly.
Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11
To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.
Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.
Installation:
After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
1. Open ArcGIS Pro
2. Project -> Add-In Manager -> Options
3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar
The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer is for long range planning purposes. It is compiled from COMPASS member agencies.For ITD's Functional Class Map (short range) click here: https://data-iplan.opendata.arcgis.com/datasets/IPLAN::itd-functional-class/aboutPlease download Long Range layer file here:Click here to Download the lyrx file for use in ArcGIS Pro for use to match the colors on the map. Add the lyrx file to a map in ArcGIS Pro and the data will load right into your map with the correct color scheme.For ArcMap users, click on this link and choose the Open in ArcGIS Desktop Dropdown button at the right of the page. ArcMap is an option. The Fields are as follows:rid - Name of roadwayfunclass - Long Range Functional Class of Roadway - current state of roadway may not match the long range planning type. source - date of last update, individual roadways may change as updates occur. fcupdate - for use while updating process is underway. Currently identical to funclass fieldcounty - county
Facebook
TwitterThis map, based on data from the National Institute of Geographical and Forest Information (IGN-F), provides the scope of EPCIs with own taxation (i.e. intercommunalities, see glossary in metadata) of the Seine-Maritime Department, as well as their name. Metadata Link to metadata Additional resources * Banatic site: The national database on intercommunality offers various data, downloadable in xls or pdf format:common members, date of creation, skills, financial profile, contact, population, density, etc. * INSEE local statistical site: https://statistiques-locales.insee.fr/#c=report&chapter=evolpop&report=r02&selgeo1=epci.200023414&selgeo2=fe.1 This site allows the consultation and download of the main statistics of INSEE at the level of intercommunality. * Site data-economie.gouv: This site offers links to certain financial data of intercommunalities (individual accounts, balance and accounting aggregates, etc.) * Geoportal site: https://www.geoportail.gouv.fr/ This IGN website offers various visualisations of data (in particular INSEE: share of poor households, share of under-18s, single-parent families, etc. at the level of carking, i.e. rectangles of varying size, aggregated from 200 m side tiles, always counting a minimum of 11 tax households. However, it is possible to overlay the perimeters of the intercommunalities, which allows to have an idea of the internal variations of each EPCI, depending on the indicators chosen.
Facebook
TwitterAttribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
License information was derived automatically
This web map references the live tiled map service from the OpenStreetMap (OSM) project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: https://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in ESRI products under a Creative Commons Attribution-ShareAlike license. Tip: This service is one of the basemaps used in the ArcGIS.com map viewer. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10. Tip: Here are some well known locations as they appear in this web map, accessed by launching the web map with a URL that contains location parameters: Athens, Cairo, Jakarta, Moscow, Mumbai, Nairobi, Paris, Rio De Janeiro, Shanghai
Facebook
TwitterIndoor Viewer is an ArcGIS Indoors application template for viewing indoor maps and various other indoor data. This app provides an indoor mapping experience for searching and exploring locations of people, places, and events happening within your workplace. You can use Indoor Viewer to confidently navigate your workplace or campus, increase productivity and collaboration with your colleagues, and feel more connected to your workplace or campus.Key Features offered by the Indoor Viewer app:Explore indoor maps and navigate to people and places within your organization.Search for specific people, activities, events, offices, classrooms, and other points of interest.Integrate with your calendar to see locations of scheduled meetings and eventsBook office hotels or meeting rooms for collaboration.Review estimated travel times to offices, meeting rooms and event locations.@@indoors_features6@@Share indoor location to update others with your current location or help others find a location.Link to other apps and pass indoor location information such as when submitting work requests to maintenance systems.Indoor Viewer application requires Indoors Maps license.
Facebook
TwitterThe Digital Geologic-GIS Map of the Hatch Trading Post Quadrangle, Utah is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (hatp_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (hatp_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (hatp_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (hove_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (hove_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (hatp_geology_metadata_faq.pdf). Please read the hove_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service Geologic Resources Inventory and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (hatp_geology_metadata.txt or hatp_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThese are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:
Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.
Below is a list of the GIS Layers provided (shapefile format):
Recreation (Zipped - 5 MB - click here)
Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed
Scenic Resources (Zipped - 3 MB - click here)
Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element
Biological Resources (Zipped - 45 MB - click here)
National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat
Hazards (Zipped - 8 MB - click here)
FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area
Zoning and Land Use (Zipped - 13 MB - click here)
Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning
Other Layers (Zipped - 38 MB - click here)
Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village
Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.
Facebook
TwitterThe Digital Geologic-GIS Map of Arkansas Post National Memorial and Vicinity, Arkansas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (arpo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (arpo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (arpo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (arpo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (arpo_geology_metadata_faq.pdf). Please read the arpo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arkansas Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (arpo_geology_metadata.txt or arpo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThis abstract contains links to public ArcGIS maps that include locations of carbonate springs and some of their characteristics. Information for accessing and navigating through the maps are included in a PowerPoint presentation IN THE FILE UPLOAD SECTION BELOW. Three separate data sets are included in the maps:
Several base maps are included in the links. The US carbonate map describes and categorizes carbonates (e.g., depth from surface, overlying geology/ice, climate). The carbonate springs map categorizes springs as being urban, specifically within 1000 ft of a road, or rural. The basis for this categorization was that the heat island effect defines urban as within a 1000 ft of a road. There are other methods for defining urban versus rural to consider. Map links and details of the information they contain are listed below.
Map set 1: The WQP map provides three mapping options separated by the parameters available at each spring site. These maps summarize discrete water quality samples, but not data logger availability. Information at each spring provides links for where users can explore further data.
Option 1: WQP data with urban and rural springs labeled, with highlight of springs with or without NWIS data https://www.arcgis.com/home/item.html?id=2ce914ec01f14c20b58146f5d9702d8a
Options 2: WQP data by major ions and a few other solutes https://www.arcgis.com/home/item.html?id=5a114d2ce24c473ca07ef9625cd834b8
Option 3:WQP data by various carbon species https://www.arcgis.com/home/item.html?id=ae406f1bdcd14f78881905c5e0915b96
Map 2: The worldwide carbonate map in the WoKaS data set (citation below) includes a description of carbonate purity and distribution of urban and rural springs, for which discharge data are available: https://www.arcgis.com/apps/mapviewer/index.html?webmap=5ab43fdb2b784acf8bef85b61d0ebcbe.
Reference: Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B. and Auler, A., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1), pp.1-9.
Map 3: Karst and spring data from selected states: This map includes sites that members of the RCN have suggested to our group.
https://uageos.maps.arcgis.com/apps/mapviewer/index.html?webmap=28ed22a14bb749e2b22ece82bf8a8177
This data set is incomplete (as of October 13, 2022 it includes Florida and Missouri). We are looking for more information. You can share data links to additional data by typing them into the hydroshare page created for our group. Then new sites will periodically be added to the map: https://www.hydroshare.org/resource/0cf10e9808fa4c5b9e6a7852323e6b11/
Acknowledgements: These maps were created by Michael Jones, University of Arkansas and Shishir Sarker, University of Kentucky with help from Laura Toran and Francesco Navarro, Temple University.
TIPS FOR NAVIGATING THE MAPS ARE IN THE POWERPOINT DOCUMENT IN THE FILE UPLOAD SECTION BELOW.
Facebook
TwitterArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
Facebook
TwitterThe Digital Geologic-GIS Map of the Arkansas Post Quadrangle, Arkansas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (arkp_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (arkp_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (arpo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (arpo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (arkp_geology_metadata_faq.pdf). Please read the arpo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arkansas Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (arkp_geology_metadata.txt or arkp_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe way to access Layers Quickly.
Quick Layers is an Add-In for ArcMap 10.6+ that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 1.164
To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers) using GDRS Manager.
Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.
Installation:
After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
1. Open ArcMap
2. Customize -> Add-In Manager… -> Options
3. Click add folder, and enter the location of the Quick Layers app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers
4. After you do this, the Quick Layers toolbar will be available. To add it, go to Customize -> Toolbars and select DNR Quick Layers 10
The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.
Facebook
TwitterThis web map contains the Bing Maps aerial imagery with labels web mapping service, which provides worldwide orthographic aerial and satellite imagery with roads and labels overlaid. Coverage varies by region, with the most detailed coverage in the USA and United Kingdom. Coverage in different areas within a country also varies in detail based on the availability of imagery for that region. Bing Maps is continuously adding imagery in new areas and updating coverage in areas of existing coverage. This map does not include bird's eye imagery. Information regarding monthly updates of imagery coverage are available on the Bing Community blog. Post a comment to the Bing Community blog to request imagery vintage information for a specific area.Tip: The Bing Maps Hybrid service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Bing Maps Hybrid from the Basemap control to start browsing! You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.If you need information on how to access Bing Maps, information is available in the ArcGIS Online Content Resource Center.See Bing Maps (http://www.bing.com/maps) for more information about the Bing Maps mapping system, terms of use, and a complete list of data suppliers.
Facebook
TwitterThe Digital Geologic-GIS Map of Hubbell Trading Post National Historic Site and Vicinity, Arizona is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (hutr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (hutr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (hutr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (hutr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (hutr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (hutr_geology_metadata_faq.pdf). Please read the hutr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U. S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (hutr_geology_metadata.txt or hutr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterIn addition to displaying earthquakes by magnitude, this service also provide earthquake impact details. Impact is measured by population as well as models for economic and fatality loss. For more details, see: PAGER Alerts. Consumption Best Practices:As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cache-able relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cache-able. Update Frequency: Events are updated as frequently as every 5 minutes and are available up to 30 days with the following exceptions:Events with a Magnitude LESS than 4.5 are retained for 7 daysEvents with a Significance value, "sig" field, of 600 or higher are retained for 90 days In addition to event points, ShakeMaps are also provided. These have been dissolved by Shake Intensity to reduce the Layer Complexity.The specific layers provided in this service have been Time Enabled and include:Events by Magnitude: The event’s seismic magnitude value.Contains PAGER Alert Level: USGS PAGER (Prompt Assessment of Global Earthquakes for Response) system provides an automated impact level assignment that estimates fatality and economic loss.Contains Significance Level: An event’s significance is determined by factors like magnitude, max MMI, ‘felt’ reports, and estimated impact.Shake Intensity: The Instrumental Intensity or Modified Mercalli Intensity (MMI) for available events. For field terms and technical details, see: ComCat Documentation Alternate SymbologiesVisit the Classic USGS Feature Layer item for a Rainbow view of Shakemap features. RevisionsSep 16, 2025: Exposed ‘UniqueId’ field in Shake Intensity Polygon layer.Sep 14, 2025: Upgrade to Layer data update workflow, to improve reliability and scalability.Aug 14, 2024: Added a default Minimum scale suppression of 1:6,000,000 on Shake Intensity layer. Jul 11, 2024: Updated event popup, setting "Tsunami Warning" text to "Alert Possible" when flag is present. Also included hyperlink to tsunami warning center. Feb 13, 2024: Updated feed logic to remove Superseded events This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to USGS source for official guidance. If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Facebook
TwitterThis file, established by the National Institute of Geographical and Forest Information (IGN-F) in September 2020, provides the list and scope of EPCIs with own taxation (i.e. inter-communalities, see glossary in metadata) of the Seine-Maritime Department, as well as their INSEE code and their type (urban community, agglomeration community, community of municipalities). Metadata Link to metadata Additional resources * Banatic site: The national database on intercommunality offers various data, downloadable in xls or pdf format: common members, date of creation, skills, financial profile, contact, population, density, etc. * INSEE local statistical site: https://statistiques-locales.insee.fr/#c=report&chapter=evolpop&report=r02&selgeo1=epci.200023414&selgeo2=fe.1 This site allows the consultation and download of the main statistics of INSEE at the level of intercommunality. * Site data-economie.gouv: This site offers links to certain financial data of intercommunalities (individual accounts, balance and accounting aggregates, etc.) * Geoportal site: https://www.geoportail.gouv.fr/ This IGN website offers various visualisations of data (in particular INSEE: share of poor households, share of under-18s, single-parent families, etc. at the level of carking, i.e. rectangles of varying size, aggregated from 200 m side tiles, always counting a minimum of 11 tax households.However, it is possible to overlay the perimeters of the intercommunalities, which allows to have an idea of the internal variations of each EPCI, depending on the indicators chosen. Metadata Link to metadata Additional resources * Banatic site: The national database on intercommunality offers various data, downloadable in xls or pdf format: common members, date of creation, skills, financial profile, contact, population, density, etc. * INSEE local statistical site: https://statistiques-locales.insee.fr/#c=report&chapter=evolpop&report=r02&selgeo1=epci.200023414&selgeo2=fe.1 This site allows the consultation and download of the main statistics of INSEE at the level of intercommunality. * Site data-economie.gouv: This site offers links to certain financial data of intercommunalities (individual accounts, balance and accounting aggregates, etc.) * Geoportal site: https://www.geoportail.gouv.fr/ This IGN website offers various visualisations of data (in particular INSEE: share of poor households, share of under-18s, single-parent families, etc. at the level of carking, i.e. rectangles of varying size, aggregated from 200 m side tiles, always counting a minimum of 11 tax households. However, it is possible to overlay the perimeters of the intercommunalities, which allows to have an idea of the internal variations of each EPCI, depending on the indicators chosen.
Facebook
TwitterThis web map contains the Bing Maps aerial imagery web mapping service, which offers worldwide orthographic aerial and satellite imagery. Coverage varies by region, with the most detailed coverage in the USA and United Kingdom. Coverage in different areas within a country also varies in detail based on the availability of imagery for that region. Bing Maps is continuously adding imagery in new areas and updating coverage in areas of existing coverage. This map does not include bird's eye imagery. Information regarding monthly updates of imagery coverage are available on the Bing Community blog. Post a comment to the Bing Community blog to request imagery vintage information for a specific area.Tip: The Bing Maps Aerial service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Bing Maps Aerial from the Basemap control to start browsing! You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.If you need information on how to access Bing Maps, information is available in the ArcGIS Online Content Resource Center.See Bing Maps (http://www.bing.com/maps) for more information about the Bing Maps mapping system, terms of use, and a complete list of data suppliers.
Facebook
TwitterAn ArcGIS Online vector basemap in the Equal Earth projection, for global or regional thematic mapping in an equal area projection (which is important).To customize the style of this basemap, here is a direct link to open it in the Vector Basemap Tile Style Editor.Here is a link to a web map that uses this Equal Earth vector basemap, ready for your data.Find more insights and resources about making basemaps in non-Mercator projections in this blog post from Andy Skinner: https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/mapping/beyond-web-mercator-building-basemaps-in-different-projections/Here are similar maps, for different coverage areas.Albers Equal Area Continental United StatesAlbers Equal Area EuropeAlbers Equal Area AsiaBest, John Nelson
Facebook
TwitterMature Support Notice: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This web map contains the same layers as the 'Imagery with Labels' basemap that is available in the basemap gallery in the ArcGIS applications but also adds the World Transportation map serviceThe World Transportation map service shows streets, roads and highways and their names. When you zoom in to the highest level of detail the lines disappear and you just see the street names and road numbers. The 'Imagery with Labels' basemap contains the World Imagery map service and the World Boundaries and Places map service, so when you use that basemap you get boundaries and places, but you don't get streets and roads at small scales or street and road labels at large scale. So by adding the World Transportation map service into your map as well you get those too.Want to use this map as the basemap for your own web map? If you have not created your web map yet, simply open this map and then do Save As to save a copy of it as your own map, and then make changes to it like zooming in and adding more data. If you have already created your web map, open it and choose the Imagery With Labels basemap from the Basemap dropdown. Then add the World Transportation service into your map by searching for it. This 'Imagery with Labels and Transportation' web map shows you what this looks like. The World Transportation map service is designed to be drawn underneath the World Boundaries and Places map service, as you can see in this web map.In this web map, we have set the Transportation layer with partial transparency to make the transportation network less prominent relative to the imagery. You can manipulate the level of transparency that you use for the basemap and reference layers in the web maps that you create. You can do this in the layer properties of the layers in the map table of contents.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates. Tip: This web map is a useful general purpose map that you can link to from web pages, emails, social media, etc, and embed in your own web page. Just open the map and then choose the Share option. Like with any public map in ArcGIS Online, you don't need to have an ArcGIS Online account in order to share this map by linking or embedding. In addition, by adding extent parameters in the URL you use to link or embed the map, you can take users directly to particular locations. So anyone can immediately take advantage of this map on the web to show any location in the world without even being signed in to ArcGIS Online. See this help topic for more information. For example, here are some links that use extent parameters to open this map at some famous locations. Some of these specify a rectangular extent on the map to zoom to. Others specify a center point and a zoom level to zoom to:Grand Canyon, Arizona, USAGolden Gate, California, USATaj Mahal, Agra, IndiaVatican CityBronze age white horse, Uffington, UKUluru (Ayres Rock), AustraliaMachu Picchu, Cusco, PeruOkavango Delta, Botswana