World Continents represents the boundaries for the continents of the world. It provides a basemap layer of the continents, delivering a straightforward method of selecting a small multicountry area for display or study.This layer is best viewed out beyond a scale of 1:3,000,000. The original source was extracted from the ArcWorld Supplement database in 2001 and updated as country boundaries coincident to regional boundaries change. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Continents.
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Complete Water Utility Network in file shapefile format. Consume this dataset if you wish to download the entire Water Utility network dataset at once.
World Countries provides a detailed basemap layer for the country boundaries of the world as they existed in January 2024. It has been designed to be used as a basemap and includes fields for local and official names and country codes, along with fields for capital, continent, and display. Particularly useful are the fields LAND_TYPE and LAND_RANK that separate polygons based on their size. These fields are helpful for rendering at different scales by providing the ability to turn off small islands that may clutter small-scale views.The data is sourced from Garmin International, Inc. and was published here in October 2024. This layer is updated every 12-18 months or as significant changes occur.
The Digital Geologic-GIS Map of the Brooks Range and Vicinity, Alaska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (arcn_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML files for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (arcn_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (arcn_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cakr_gaar_kova_noat_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (arcn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (arcn_geology_metadata_faq.pdf). Please read the cakr_gaar_kova_noat_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (arcn_geology_metadata.txt or arcn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map digital data scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This shapefile provides a worldwide geographic division by merging the World Continents division proposed by Esri Data and Maps (2024) to the Global Oceans and Seas version 1 division proposed by the Flanders Marine Institute (2021). Though divisions of continents and oceans/seas are available, the combination of both in a single shapefile is scarce.
The Continents and Oceans/Seas shapefile was carefully processed to remove overlaps between the inputs, and to fill gaps (i.e., areas with no information) by spatially joining these gaps to neighbour polygons. In total, the original world continents input divides land areas into 8 categories (Africa, Antarctica, Asia, Australia, Europe, North America, Oceania, and South America), while the original oceans/seas input divides the oceans/seas into 10 categories (Arctic Ocean, Baltic Sea, Indian Ocean, Mediterranean Region, North Atlantic Ocean, North Pacific Ocean, South Atlantic Ocean, South China and Easter Archipelagic Seas, South Pacific Ocean, and Southern Ocean). Therefore, the resulting world geographic division has 18 possible categories.
References
Esri Data and Maps (2024). World Continents. Available online at https://hub.arcgis.com/datasets/esri::world-continents/about. Accessed on 05 March 2024.
Flanders Marine Institute (2021). Global Oceans and Seas, version 1. Available online at https://www.marineregions.org/. https://doi.org/10.14284/542. Accessed on 04 March 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Building footprint polygons are updated weekly by ECGIS. They provide a general reference of where buildings in Eaton County are located. These are not survey-grade.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Download - Land cover of United Republic of Tanzania - Shape file format
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a geospatial dataset representing local- and regional-scale aquifer system boundaries, defined on the basis of an extensive literature review and published in GebreEgziabher et al. (2022). Nature Communications, 13, 2129, https://www.nature.com/articles/s41467-022-29678-7
The database contains 440 polygons, each representing one study area analyzed in GebreEgziabher et al. (2022). The attribute table associated with the shapefile has two fields (column headings): (1) aquifer system title (Ocala Uplift sub-area of the broader Floridan Aquifer System), and (2) broader aquifer system title (e.g., the Floridan Aquifer System).
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset contains 4 different scale GEODATA TOPO series, Geoscience Australia topographic datasets. 1M, 2.5M, 5M and 10M with age ranges from 2001 to 2004.
1:1 Million - Global Map Australia 1M 2001 is a digital dataset covering the Australian landmass and island territories, at a 1:1 million scale. Product Specifications -Themes: It consists of eight layers of information: Vector layers - administrative boundaries, drainage, transportation and population centres Raster layers - elevation, vegetation, land use and land cover -Coverage: Australia -Currency: Variable, based on GEODATA TOPO 250K Series 1 -Coordinates: Geographical -Datum: GDA94, AHD -Medium: Free online -Format: -Vector: ArcInfo Export, ESRI Shapefile, MapInfo mid/mif and Vector Product Format (VPF) -Raster: Band Interleaved by Line (BIL)
1:2.5 Million - GEODATA TOPO 2.5M 2003 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 2.5 million general reference map and is suitable for GIS applications. The product consists of the following layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; Spot heights; and waterbodies. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 1:2.5 million scale general reference maps. This data supersedes the TOPO 2.5M 1998 product through the following characteristics: developed according to GEODATA specifications derived from GEODATA TOPO 250K Series 2 data where available. Product Specifications Themes: GEODATA TOPO 2.5M 2003 consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; spot heights; and waterbodies Coverage: Australia Currency: 2003 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online - Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif
1:5 Million - GEODATA TOPO 5M 2004 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 5 million general reference map and is suitable for GIS applications. Offshore and sand ridge layers were sourced from scanning of the original 1:5 million map production material. The remaining nine layers were derived from the GEODATA TOPO 2.5M 2003 dataset. Free online. Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif. Product Specifications: Themes: consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges, spot heights and waterbodies Coverage: Australia Currency: 2004 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online
1:10 Million - The GEODATA TOPO 10M 2002 version of this product has been completely revised, including the source information. The data is derived primarily from GEODATA TOPO 250K Series 1 data. In October 2003, the data was released in double precision coordinates. It provides a fundamental base layer of geographic information on which you can build a wide range of applications and is particularly suited to State-wide and national applications. The data consists of ten layers: built-up areas, contours, drainage, Spot heights, framework, localities, offshore, rail transport, road transport, and waterbodies. Coverage: Australia Currency: 2002 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, Arcview Shapefile and MapInfo mid/mif Medium: Free online
1:1Million - Vector data was produced by generalising Geoscience Australia's GEODATA TOPO 250K Series 1 data and updated using Series 2 data where available in January 2001. Raster data was sourced from USGS and updated using GEODATA 9 Second DEM Series 2, 1:5 million, Vegetation - Present (1988) and National Land and Water Resources data. However, updates have not been subjected to thorough vetting. A more detailed land use classification for Australia is available at www.nlwra.gov.au.
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_48006
1:2.5Million - Data for the Contours, Offshore, and Sand ridge layers was captured from 1:2.5 million scale mapping by scanning stable base photographic film positives of the original map production material. The key source material for Built-up areas, Drainage, Spot heights, Framework, Localities, Rail transport, Road transport and Waterbodies layers was GEODATA TOPO 2.5M 2003
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60804
1:5Million - Offshore and Sand Ridge layers have been derived from 1:5M scale mapping by scanning stable base photographic film positives of the various layers of the original map production material. The remaining layers were sourced from the GEODATA TOPO 2.5M 2003 product.
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_61114
1:10Million - The key source for production of the Builtup Areas, Drainage, Framework, Localities, Rail Transport, Road Transport and Waterbodies layers was the GEODATA TOPO 250K Series 1 product. Some revision of the Builtup Areas, Road Transport, Rail Transport and Waterbodies layers was carried out using the latest available satelite imagery. The primary source for the Spot Heights, Contours and Offshore layers was the GEODATA TOPO 10M Version 1 product. A further element to the production of GEODATA TOPO 10M 2002 has been the datum shift from the Australian Geodetic Datum 1966 (AGD66) to the Geocentric Datum of Australia 1994 (GDA94).
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60803
Geoscience Australia (2001) Geoscience Australia GEODATA TOPO series - 1:1 Million to 1:10 Million scale. Bioregional Assessment Source Dataset. Viewed 09 October 2018, http://data.bioregionalassessments.gov.au/dataset/310c5d07-5a56-4cf7-a5c8-63bdb001cd1a.
https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/2AFGSWhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/2AFGSW
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Registered scans of the maps from the Language Atlas of the Pacific Area (excluding the maps of Japan) are made available through the Electronic Cultural Atlas Initiative (ECAI) Metadata Clearinghouse as a result of cooperation between Academia Sinica and the ECAI Austronesian Atlas Team led by David Blundell and Lawrence Crissman. The Australian Academy of the Humanities, which owns the copyright to the available maps, has graciously permitted their reproduction and distribution in this digital format, and we are grateful for their support. Any public use of the maps should acknowledge their source and copyright ownership.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Parcels and property data maintained and provided by Lee County Property Appraiser. This dataset includes condominium units. Property attribute data joined to parcel GIS layer by Lee County Government GIS.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983
Name
Type
Length
Description
STRAP
String
25
17-digit Property ID (Section, Township, Range, Area, Block, Lot)
BLOCK
String
10
5-digit portion of STRAP (positions 9-13)
LOT
String
8
Last 4-digits of STRAP
FOLIOID
Double
8
Unique Property ID
MAINTDATE
Date
8
Date LeePA staff updated record
MAINTWHO
String
20
LeePA staff who updated record
UPDATED
Date
8
Data compilation date
HIDE_STRAP
String
1
Confidential parcel ownership
TRSPARCEL
String
17
Parcel ID sorted by Township, Range & Section
DORCODE
String
2
Department of Revenue property classification code
CONDOTYPE
String
1
Type of condominium: C (commercial) or R (residential)
UNITOFMEAS
String
2
Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
NUMUNITS
Double
8
Number of Land Units (units defined in UNITOFMEAS)
FRONTAGE
Integer
4
Road Frontage in Feet
DEPTH
Integer
4
Property Depth in Feet
GISACRES
Double
8
Total Computed Acres from GIS
TAXINGDIST
String
3
Taxing District of Property
TAXDISTDES
String
60
Taxing District Description
FIREDIST
String
3
Fire District of Property
FIREDISTDE
String
60
Fire District Description
ZONING
String
10
Zoning of Property
ZONINGAREA
String
3
Governing Area for Zoning
LANDUSECOD
SmallInteger
2
Land Use Code
LANDUSEDES
String
60
Land Use Description
LANDISON
String
5
BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
SITEADDR
String
55
Lee County Addressing/E911
SITENUMBER
String
10
Property Location - Street Number
SITESTREET
String
40
Street Name
SITEUNIT
String
5
Unit Number
SITECITY
String
20
City
SITEZIP
String
5
Zip Code
JUST
Double
8
Market Value
ASSESSED
Double
8
Building Value + Land Value
TAXABLE
Double
8
Taxable Value
LAND
Double
8
Land Value
BUILDING
Double
8
Building Value
LXFV
Double
8
Land Extra Feature Value
BXFV
Double
8
Building Extra Feature value
NEWBUILT
Double
8
New Construction Value
AGAMOUNT
Double
8
Agriculture Exemption Value
DISAMOUNT
Double
8
Disability Exemption Value
HISTAMOUNT
Double
8
Historical Exemption Value
HSTDAMOUNT
Double
8
Homestead Exemption Value
SNRAMOUNT
Double
8
Senior Exemption Value
WHLYAMOUNT
Double
8
Wholly Exemption Value
WIDAMOUNT
Double
8
Widow Exemption Value
WIDRAMOUNT
Double
8
Widower Exemption Value
BLDGCOUNT
SmallInteger
2
Total Number of Buildings on Parcel
MINBUILTY
SmallInteger
2
Oldest Building Built
MAXBUILTY
SmallInteger
2
Newest Building Built
TOTALAREA
Double
8
Total Building Area
HEATEDAREA
Double
8
Total Heated Area
MAXSTORIES
Double
8
Tallest Building on Parcel
BEDROOMS
Integer
4
Total Number of Bedrooms
BATHROOMS
Double
8
Total Number of Bathrooms / Not For Comm
GARAGE
String
1
Garage on Property 'Y'
CARPORT
String
1
Carport on Property 'Y'
POOL
String
1
Pool on Property 'Y'
BOATDOCK
String
1
Boat Dock on Property 'Y'
SEAWALL
String
1
Sea Wall on Property 'Y'
NBLDGCOUNT
SmallInteger
2
Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
NMINBUILTY
SmallInteger
2
Oldest New Building Built
NMAXBUILTY
SmallInteger
2
Newest New Building Built
NTOTALAREA
Double
8
Total New Building Area
NHEATEDARE
Double
8
Total New Heated Area
NMAXSTORIE
Double
8
Tallest New Building on Parcel
NBEDROOMS
Integer
4
Total Number of New Bedrooms
NBATHROOMS
Double
8
Total Number of New Bathrooms/Not For Comm
NGARAGE
String
1
New Garage on Property 'Y'
NCARPORT
String
1
New Carport on Property 'Y'
NPOOL
String
1
New Pool on Property 'Y'
NBOATDOCK
String
1
New Boat Dock on Property 'Y'
NSEAWALL
String
1
New Sea Wall on Property 'Y'
O_NAME
String
30
Owner Name
O_OTHERS
String
120
Other Owners
O_CAREOF
String
30
In Care Of Line
O_ADDR1
String
30
Owner Mailing Address Line 1
O_ADDR2
String
30
Owner Mailing Address Line 2
O_CITY
String
30
Owner Mailing City
O_STATE
String
2
Owner Mailing State
O_ZIP
String
9
Owner Mailing Zip
O_COUNTRY
String
30
Owner Mailing Country
S_1DATE
Date
8
Most Current Sale Date > $100.00
S_1AMOUNT
Double
8
Sale Amount
S_1VI
String
1
Sale Vacant or Improved
S_1TC
String
2
Sale Transaction Code
S_1TOC
String
2
Sale Transaction Override Code
S_1OR_NUM
String
13
Original Record (Lee County Clerk)
S_2DATE
Date
8
Previous Sale Date > $100.00
S_2AMOUNT
Double
8
Sale Amount
S_2VI
String
1
Sale Vacant or Improved
S_2TC
String
2
Sale Transaction Code
S_2TOC
String
2
Sale Transaction Override Code
S_2OR_NUM
String
13
Original Record (Lee County Clerk)
S_3DATE
Date
8
Next Previous Sale Date > $100.00
S_3AMOUNT
Double
8
Sale Amount
S_3VI
String
1
Sale Vacant or Improved
S_3TC
String
2
Sale Transaction Code
S_3TOC
String
2
Sale Transaction Override Code
S_3OR_NUM
String
13
Original Record (Lee County Clerk)
S_4DATE
Date
8
Next Previous Sale Date > $100.00
S_4AMOUNT
Double
8
Sale Amount
S_4VI
String
1
Sale Vacant or Improved
S_4TC
String
2
Sale Transaction Code
S_4TOC
String
2
Sale Transaction Override Code
S_4OR_NUM
String
13
Original Record (Lee County Clerk)
LEGAL
String
255
Full Legal Description (On Deed)
GARBDIST
String
3
County Garbage Hauling Area
GARBTYPE
String
1
County Garbage Pick-up Type
GARBCOMCAT
String
1
County Garbage Commercial Category
GARBHEADER
String
1
Garbage Header Code
GARBUNITS
Double
8
Number of Garbage Units
CREATEYEAR
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
New political and administrative boundaries Shapefile of Nepal. Downloaded and republished from the Survey Department website.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This file contains European countries in a shapefile format that can be used in python, R or matlab. The file has been created by Drin Marmullaku based on GADM version 4.1 (https://gadm.org/) and distributed according to their license (https://gadm.org/license.html).
Please cite as: Sevdari, Kristian; Marmullaku, Drin (2023). Shapefile of European countries. Technical University of Denmark. Dataset. https://doi.org/10.11583/DTU.23686383 This dataset is distributed under a CCBY-NC-SA 4.0 license
Using the data to create maps for publishing of academic research articles is allowed. Thus you can use the maps you made with GADM data for figures in articles published by PLoS, Springer Nature, Elsevier, MDPI, etc. You are allowed (but not required) to publish these articles (and the maps they contain) under an open license such as CC-BY as is the case with PLoS journals and may be the case with other open access articles. Data for the following countries is covered by a a different license Austria: Creative Commons Attribution-ShareAlike 2.0 (source: Government of Austria)
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
World Continents represents the boundaries for the continents of the world. It provides a basemap layer of the continents, delivering a straightforward method of selecting a small multicountry area for display or study.This layer is best viewed out beyond a scale of 1:3,000,000. The original source was extracted from the ArcWorld Supplement database in 2001 and updated as country boundaries coincident to regional boundaries change. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Continents.