Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Geographic Information System (GIS) software market is experiencing robust growth, driven by increasing adoption across various sectors like government, utilities, and transportation. The market, currently valued at approximately $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key trends, including the rising demand for location-based services, the proliferation of geospatial data, and the increasing use of cloud-based GIS solutions. The cloud-based segment is rapidly gaining traction due to its scalability, cost-effectiveness, and accessibility. Furthermore, the enterprise application segment dominates the market share, reflecting the widespread adoption of GIS for complex spatial analysis and decision-making in large organizations. While the market faces some restraints, such as the high initial investment costs for some advanced systems and the need for specialized expertise, the overall growth trajectory remains positive. The increasing integration of GIS with other technologies like AI and IoT further enhances its capabilities, opening new avenues for market expansion. Major players like Esri, Google, and Pitney Bowes are leading the market, constantly innovating and expanding their product offerings to meet evolving customer needs. The regional distribution of the market shows strong performance in North America and Europe, driven by advanced technological infrastructure and high adoption rates. However, the Asia-Pacific region is emerging as a significant growth area, propelled by rapid urbanization and infrastructure development. The competitive landscape is marked by both established players and emerging startups, fostering innovation and competition. The ongoing advancements in GIS technology, including improvements in data visualization, analytics, and mobile accessibility, are expected to further propel market growth in the coming years. The integration of GIS with other technologies will lead to new applications and expanded opportunities, ultimately driving the market towards sustained expansion throughout the forecast period.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.
One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.
The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.
Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.
The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.
Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Mapping Software market size was valued at approximately USD 8.5 billion in 2023 and is projected to reach around USD 17.5 billion by 2032, growing at a CAGR of 8.3% from 2024 to 2032. This robust growth is driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, disaster management, and agriculture.
One of the primary growth factors for the GIS Mapping Software market is the rising need for spatial data analytics. Organizations are increasingly recognizing the value of geographical data in making informed decisions, driving the demand for sophisticated mapping solutions. Furthermore, advancements in satellite imaging technology and the increasing availability of high-resolution imagery are enhancing the capabilities of GIS software, making it a crucial tool for various applications.
Another significant driver is the integration of GIS with emerging technologies such as artificial intelligence (AI) and the Internet of Things (IoT). These integrations are facilitating real-time data processing and analysis, thereby improving the efficiency and accuracy of GIS applications. For instance, in urban planning and disaster management, real-time data can significantly enhance predictive modeling and response strategies. This synergy between GIS and cutting-edge technologies is expected to fuel market growth further.
The growing emphasis on sustainable development and smart city initiatives globally is also contributing to the market's expansion. Governments and private entities are investing heavily in GIS technologies to optimize resource management, enhance public services, and improve urban infrastructure. These investments are particularly evident in developing regions where urbanization rates are high, and there is a pressing need for efficient spatial planning and management.
In terms of regional outlook, North America holds a significant share of the GIS Mapping Software market, driven by robust technological infrastructure and high adoption rates across various industries. However, Asia Pacific is expected to witness the highest growth rate during the forecast period. This growth is attributed to rapid urbanization, increasing government initiatives for smart cities, and rising investments in infrastructure development.
The Geographic Information Systems Platform has become an integral part of modern spatial data management, offering a comprehensive framework for collecting, analyzing, and visualizing geographic data. This platform facilitates the integration of diverse data sources, enabling users to create detailed maps and spatial models that support decision-making across various sectors. With the increasing complexity of urban environments and the need for efficient resource management, the Geographic Information Systems Platform provides the tools necessary for real-time data processing and analysis. Its versatility and scalability make it an essential component for organizations looking to leverage geospatial data for strategic planning and operational efficiency.
The GIS Mapping Software market is segmented by component into software and services. The software segment dominates the market, primarily due to the continuous advancements in GIS software capabilities. Modern GIS software offers a range of functionalities, from basic mapping to complex spatial analysis, making it indispensable for various sectors. These software solutions are increasingly user-friendly, allowing even non-experts to leverage geospatial data effectively.
Moreover, the software segment is witnessing significant innovation with the integration of AI and machine learning algorithms. These advancements are enabling more sophisticated data analysis and predictive modeling, which are crucial for applications such as disaster management and urban planning. The adoption of cloud-based GIS software is also on the rise, offering scalability and real-time data processing capabilities, which are essential for dynamic applications like transport management.
The services segment, although smaller than the software segment, is also experiencing growth. This includes consulting, implementation, and maintenance services that are critical for the successful deployment and operation of GIS systems. The increasing complexity of GIS applications nec
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the burgeoning adoption of cloud-based solutions offers scalability, cost-effectiveness, and enhanced accessibility to a wider user base, including small and medium-sized enterprises (SMEs). Secondly, the escalating need for precise spatial data analysis in various applications, such as urban planning, geological exploration, and water resource management, is significantly boosting market demand. The increasing integration of GIS with other technologies like AI and IoT further amplifies its capabilities, leading to more sophisticated applications and increased market penetration. Finally, government initiatives promoting digitalization and smart city development across the globe are indirectly fueling this market expansion. However, certain restraints limit market growth. The high initial investment cost for advanced GIS software and the requirement for skilled professionals to operate these systems can be a barrier, especially for smaller organizations. Additionally, data security and privacy concerns related to the handling of sensitive geographical information pose challenges to wider adoption. Market segmentation reveals strong growth in the cloud-based GIS segment, driven by its inherent advantages, while applications in urban planning and geological exploration lead the application-based segmentation. North America and Europe currently hold significant market shares, with strong growth potential in the Asia-Pacific region due to increasing infrastructure development and government investments. Leading companies like Esri, Hexagon, and Autodesk are shaping the market landscape through continuous innovation and competitive pricing strategies, while the emergence of open-source options like QGIS and GRASS GIS provides alternative, cost-effective solutions.
Alaska Energy Authority Power Cost Equalization (PCE) program by community. The power cost equalization program supports rural Alaskans who live in areas where energy costs are significantly higher than urban areas in meeting the cost of electricity."AEA determines eligibility of community facilities and residential customers and authorizes payment to the electric utility. Commercial customers are not eligible to receive PCE credit. Participating utilities are required to reduce each eligible customer’s bill by the amount that the State pays for PCE. RCA determines if a utility is eligible to participate in the program and calculates the amount of PCE per kWh payable to the utility. More information about the RCA may be found at www.state.ak.us/rca."(AEA, 2017)Source: Alaska Energy AuthorityThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data - it has been primarily compiled from AEA PCE Fiscal Year Utility Report PDFs. For more information and for questions about this data, see: AEA Power Cost Equalization
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated market value of approximately $45 billion by 2033. Key drivers include the rising adoption of cloud-based GIS solutions, enhanced data analytics capabilities, the proliferation of location-based services, and the growing need for precise spatial data analysis in various industries like urban planning, geological exploration, and water resource management. The market is segmented by application (Geological Exploration, Water Conservancy Projects, Urban Planning, Others) and type (Cloud-based, Web-based). Cloud-based solutions are gaining significant traction due to their scalability, accessibility, and cost-effectiveness. The increasing availability of high-resolution satellite imagery and advancements in artificial intelligence (AI) and machine learning (ML) are further fueling market expansion. While data security concerns and the high initial investment costs for some advanced solutions present restraints, the overall market outlook remains positive, with significant opportunities for both established players and emerging technology providers. Geographical expansion is another key aspect of market growth. North America and Europe currently hold a significant market share, owing to established GIS infrastructure and early adoption of advanced technologies. However, the Asia-Pacific region is expected to witness rapid growth in the coming years, driven by rising government investments in infrastructure development and increasing urbanization in countries like China and India. Competitive dynamics are shaping the market, with major players like Esri, Autodesk, Hexagon, and Mapbox competing on the basis of software features, data integration capabilities, and customer support. The emergence of open-source GIS solutions like QGIS and GRASS GIS is also challenging the dominance of proprietary software, offering cost-effective alternatives for various applications. The continued development and integration of advanced technologies like 3D mapping, real-time data visualization, and location intelligence will further enhance the capabilities of GIS mapping tools, driving market expansion and innovation across various sectors.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Geographic Information System Software Market was valued at USD 8.5 billion in 2022 and will reach USD 21.0 billion by 2030, registering a CAGR of 12.1% for the forecast period 2023-2030. Factor Impacting the Geographic Information System Software Market:
The development of smart cities and Modern urban Planning is expected to drive the Geographic Information System Software Market
The process of site selection, land acquisition, planning, designing, visualizing, building, project management, operations, and reporting are all aided by geographic information system (GIS) software for smart cities. Moreover, geographic information system (GIS) solutions are used in urban planning by experts to better properly analyze, model, and visualize places. By processing geospatial data from satellite imaging, aerial photography, and remote sensors, geographic information system (GIS) software systems offer a comprehensive perspective of the land and infrastructure. Additionally, the industry for geographic information system software is growing over the forecast period as a result of such geographic information system (GIS) software applications.
Restraining factor for Geographic Information System Software Market
The high cost of the system has impacted the Geographic Information System Software Market
The pricey geographic information system will further derail the overall market’s growth. The geographic information system (GIS) is expensive because, in addition to the technology and software, it is necessary to have a properly qualified human workforce. Moreover, Specialized knowledge is needed to comprehend and interpret the information gathered by a geographic information system (GIS) system, which is expensive to hire and train. This factor will therefore obstruct market growth over the forecast period. What is Geographic Information System Software?
Geographic Information System Software is used to develop, hold, retrieve, organize, display, and perform analyses on many kinds of spatial and geographic data. The geographic information system (GIS) Industry is majorly driven by infrastructural developments, such as smart cities, water and land management, utility, and urban planning. The services segment provides various applications such as location-based services and, thus, is one of the prominent contributors to the market share. Advancements in GIS technologies, such as geo-analytics and integrated location-based data services, are also boosting the adoption of GIS in various regional markets, thereby driving the market demand over the forecast period.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The GIS in the Cloud market is poised for significant growth, with a projected market size increasing from $3.2 billion in 2023 to $7.5 billion by 2032, reflecting a robust compound annual growth rate (CAGR) of 9.8%. This growth is primarily driven by the increasing adoption of cloud-based geographic information systems (GIS) across various industries. Factors such as cost efficiency, scalability, and ease of access to geospatial data are encouraging industries to shift from traditional GIS solutions to cloud-based platforms. Additionally, the surge in demand for real-time location data analytics and the proliferation of Internet of Things (IoT) devices further underpin the market's expansion.
One of the primary growth drivers for the GIS in the Cloud market is the increasing need for spatial data in various sectors. Industries such as agriculture and utilities rely heavily on geospatial data to enhance their operational efficiency and decision-making processes. The integration of AI and machine learning with cloud-based GIS has further amplified the capabilities of these systems, enabling more precise and automated data analysis. This technological synergy is propelling the demand for cloud GIS solutions, as businesses seek to harness advanced analytics for improved insights and competitive advantage. Furthermore, the rise of smart city initiatives globally is fueling the demand for GIS solutions hosted in the cloud, as urban planning and management increasingly rely on spatial analytics for sustainable development.
The transition from on-premises GIS to cloud-based solutions offers significant cost benefits, which is a major growth factor for the market. Cloud GIS solutions eliminate the need for expensive hardware and maintenance, allowing companies to allocate resources more efficiently. This cost-effectiveness is particularly appealing to small and medium enterprises (SMEs) that may lack substantial IT budgets. Moreover, the cloud's scalability allows organizations to adjust their GIS capabilities in line with their growth, avoiding the limitations of fixed-capacity systems. The flexibility and reduced total cost of ownership associated with cloud GIS are encouraging more businesses to adopt these solutions, boosting market growth.
Another critical factor driving the market's growth is the growing demand for real-time geospatial analytics. Modern businesses require instantaneous access to data to make timely and informed decisions. Cloud-based GIS platforms facilitate real-time data processing and sharing, providing organizations with up-to-the-minute insights into their operations and environments. This capability is particularly vital in sectors such as transportation and emergency services, where rapid response and decision-making are essential. The ability to leverage real-time data, combined with the global accessibility of cloud platforms, is significantly enhancing the value proposition of cloud GIS solutions.
Regionally, North America is expected to maintain its dominance in the GIS in the Cloud market, driven by the early adoption of advanced technologies and the presence of key market players. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. Rapid urbanization, coupled with growing investments in smart city projects and infrastructure development, is fueling the demand for cloud GIS solutions in this region. Additionally, government initiatives aimed at enhancing digital infrastructure are further propelling the market. Both Europe and Latin America are also experiencing increased adoption of cloud GIS, driven by technological advancements and the need for efficient resource management in various industries.
The component segment of the GIS in the Cloud market can be broadly categorized into software and services. The software component is a critical part of the market, which includes GIS platforms and applications that facilitate data visualization, spatial analysis, and mapping. The increasing demand for user-friendly and feature-rich GIS software is driving the growth of this segment. Advances in software functionalities, such as enhanced 3D visualization, real-time data processing, and AI-driven analytics, are making cloud-based GIS software more attractive to users. These advancements are helping organizations to derive more value from their spatial data, leading to higher adoption rates of GIS software solutions in the cloud environment.
On the services front, the market is witnessing a growing demand for professional
Where does healthcare cost the most? (Learn ArcGIS online lesson).
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and infrastructure development necessitate sophisticated spatial data management and analysis, fueling demand for GIS solutions across various sectors. The construction industry, for instance, leverages GIS for project planning, site surveying, and resource management, while utilities companies use it for network optimization and asset management. Furthermore, the growing adoption of cloud-based GIS platforms enhances accessibility, scalability, and cost-effectiveness, attracting a wider user base. Precision agriculture, another significant driver, utilizes GIS for efficient land management, crop monitoring, and yield optimization. Technological advancements, particularly in areas like sensor technology (imaging sensors, LIDAR), GNSS/GPS, and improved data analytics capabilities, continuously enhance GIS functionalities and expand its applications. Competitive landscape includes major players like Esri, Hexagon, and Autodesk, driving innovation and fostering market competitiveness. However, the market faces some challenges. The high initial investment required for implementing GIS solutions, along with the need for specialized technical expertise, can be barriers to entry, particularly for smaller businesses. Data security and privacy concerns also remain a significant factor influencing market growth. Despite these restraints, the long-term outlook for the GIS market remains positive, driven by continued technological progress, increasing data availability, and growing awareness of the benefits of spatial data analysis across diverse industries. The market is expected to witness substantial growth in regions like Asia Pacific and North America owing to high adoption rates and increasing investment in infrastructure projects. The consistent improvements in accuracy and cost-effectiveness of GIS technology will continue to open up new application areas, further fueling market expansion throughout the forecast period.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.
One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.
Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.
Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.
Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.
Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.
The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.
Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben
This non-exclusive report was purchased by the OGA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the OGA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities.
The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report.
The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms).
In addition, the OGA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the OGA well names from the OGA Offshore Wells shapefile (as provided on the OGA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the OGA. OGA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the OGA.
A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the OGA’s Open Data website for use in other GIS software packages.
All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the OGA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions and the proliferation of readily available geospatial data are lowering the barrier to entry for both individual and corporate users. Furthermore, advancements in mapping technologies, such as 3D mapping capabilities and improved user interfaces, are enhancing the overall user experience and driving wider adoption. The increasing need for effective data visualization in fields like real estate, urban planning, environmental monitoring, and marketing is further bolstering market growth. Segmentation reveals a significant portion of the market is attributed to paid use licenses, reflecting the advanced features and support provided by premium tools. However, the free-use segment is also growing rapidly, driven by the availability of user-friendly open-source tools and freemium models offered by major players. Corporate users constitute a larger portion of the market compared to individual users, primarily due to their higher budget allocations for data visualization and analysis tools. Geographic distribution reveals a concentration of market share in North America and Europe, largely due to higher technological adoption and a well-established digital infrastructure. However, rapid growth is anticipated in Asia Pacific regions like China and India, driven by increasing urbanization and government initiatives promoting digital transformation. Market restraints include the high cost of advanced mapping software, the need for specialized technical skills for complex projects, and the potential for data security and privacy concerns. Nevertheless, ongoing technological innovation, coupled with the increasing accessibility of data and analytical tools, is anticipated to mitigate these challenges and continue to drive significant market expansion throughout the forecast period. Key players like Mapbox, ArcGIS StoryMaps, and Google are actively shaping the market landscape through continuous product development and strategic partnerships, fostering innovation and competitive pricing strategies.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Geographic Information System (GIS) Tools market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Firstly, the increasing adoption of cloud-based GIS solutions offers scalability, cost-effectiveness, and improved accessibility for businesses of all sizes, particularly SMEs seeking efficient resource management. Secondly, the rising demand for precise location-based data analysis across diverse sectors like urban planning, environmental monitoring, and precision agriculture fuels market growth. Furthermore, technological advancements, including the integration of AI and machine learning capabilities within GIS platforms, enhance analytical power and facilitate more sophisticated spatial decision-making. Finally, government initiatives promoting smart cities and digital transformation worldwide further stimulate market expansion. The market is segmented by application (SMEs, Large Enterprises) and type (Cloud-Based, On-Premises), reflecting the diverse needs of various user groups. Large enterprises, with their extensive spatial data requirements and resources, are expected to drive significant market share, while cloud-based solutions are poised for faster growth due to their flexible deployment models. The regional landscape reveals a dynamic distribution of market share. North America, particularly the United States, holds a prominent position, driven by high technological adoption rates and the presence of major GIS solution providers. Europe follows closely, fueled by increasing government investments in infrastructure development and digitalization initiatives. The Asia-Pacific region is expected to experience significant growth, propelled by rapid urbanization and the expanding adoption of GIS technologies in developing economies like China and India. While the on-premises segment currently dominates, the cloud-based segment is anticipated to exhibit higher growth in the forecast period, driven by its inherent advantages in scalability, accessibility, and cost-efficiency. Competitive dynamics are shaped by both established players like IBM TRIRIGA and emerging technology companies, leading to innovation and diversification of GIS tool offerings. The market's future hinges on continuous technological innovation, the growing adoption of location intelligence across sectors, and the expansion of robust infrastructure supporting data accessibility and management.
800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:
Analytics (AI)
Change detection
Feature extraction
Road assets inventory
Utility assets inventory
Map data production
Geodatabase generation
Map data Processing /Classifications
Contour Map Generation
Analytics (AI)
Change Detection
Feature Extraction
Imagery Data Processing
Ortho mosaic
Ortho rectification
Digital Ortho Mapping
Ortho photo Generation
Analytics (Geo AI)
Change Detection
Map Production
Web application development
Software testing
Data migration
Platform development
AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing
Our Value Differentiator
Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”
Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture
Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects
Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables
Power sources of participating Power Cost Equalization entities by community they serve.The power cost equalization program supports rural Alaskans who live in areas where energy costs are significantly higher than urban areas in meeting the cost of electricity. Eligibility is determined by the Regulatory Commission of Alaska under Alaska Statutes 42.45.100-170.Source: Alaska Energy AuthorityThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: AEA Power Cost Equalization
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The geographical mapping software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors, including the rising adoption of cloud-based solutions offering enhanced scalability and accessibility, the burgeoning need for precise geospatial data in urban planning and infrastructure development, and the accelerating advancements in data analytics and visualization technologies enabling more insightful spatial analysis. Geological exploration, water resource management, and environmental monitoring also contribute significantly to market demand. While the specific market size and CAGR figures were not provided, a reasonable estimation based on industry reports indicates a multi-billion dollar market size in 2025, experiencing a compound annual growth rate (CAGR) of approximately 10-15% throughout the forecast period (2025-2033). This growth trajectory is anticipated to continue, propelled by the ongoing integration of GIS technologies into various applications, including autonomous vehicles, precision agriculture, and disaster management. The market is segmented by application (Geological Exploration, Water Conservancy Project, Urban Planning, Others) and type (Cloud-Based, Web-Based), with cloud-based solutions gaining significant traction due to their flexibility and cost-effectiveness. Competition is intense, with established players like Esri, Autodesk, and Hexagon alongside emerging innovative companies shaping market dynamics. However, factors like the high initial investment cost of software and the complexity of implementing and maintaining GIS systems may act as restraints to market expansion in certain regions. The North American and European markets currently dominate the geographical mapping software landscape, owing to advanced technological infrastructure and higher adoption rates. However, Asia-Pacific is poised for significant growth, driven by rapid urbanization, increasing government investments in infrastructure projects, and rising awareness of the benefits of geospatial technologies. Future market growth will depend on factors such as the continued development of advanced analytics capabilities, the integration of AI and machine learning to improve data processing and interpretation, and the development of user-friendly interfaces to make GIS technology more accessible to a broader range of users. The market's evolution is also expected to be influenced by government regulations related to data privacy and security, as well as evolving industry standards for geospatial data formats and interoperability.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇬🇧 영국 English Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben This non-exclusive report was purchased by the NSTA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the NSTA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities. The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report. The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms). In addition, the NSTA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the NSTA well names from the NSTA Offshore Wells shapefile (as provided on the NSTA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the NSTA. NSTA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the NSTA. A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the NSTA’s Open Data website for use in other GIS software packages. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the NSTA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex