49 datasets found
  1. a

    Building Footprints

    • venturacountydatadownloads-vcitsgis.hub.arcgis.com
    • hub.arcgis.com
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Ventura (2024). Building Footprints [Dataset]. https://venturacountydatadownloads-vcitsgis.hub.arcgis.com/datasets/cb6bb4a603e14b75ab05e71c64b1f07d
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    County of Ventura
    Area covered
    Description

    Initial Data Capture: Building were originally digitized using ESRI construction tools such as rectangle and polygon. Textron Feature Analyst was then used to digitize buildings using a semi-automated polygon capture tool as well as a fully automated supervised learning method. The method that proved to be most effective was the semi-automated polygon capture tool as the fully automated process produced polygons that required extensive cleanup. This tool increased the speed and accuracy of digitizing by 40%.Purpose of Data Created: To supplement our GIS viewers with a searchable feature class of structures within Ventura County that can aid in analysis for multiple agencies and the public at large.Types of Data Used: Aerial Imagery (Pictometry 2015, 9inch ortho/oblique, Pictometry 2018, 6inch ortho/oblique) Simi Valley Lidar Data (Q2 Harris Corp Lidar) Coverage of Data:Buildings have been collected from the aerial imageries extent. The 2015 imagery coverage the south county from the north in Ojai to the south in thousand oaks, to the east in Simi Valley, and to the West in the county line with Santa Barbara. Lockwood Valley was also captured in the 2015 imagery. To collect buildings for the wilderness areas we needed to use the imagery from 2007 when we last flew aerial imagery for the entire county. 2018 Imagery was used to capture buildings that were built after 2015.Schema: Fields: APN, Image Date, Image Source, Building Type, Building Description, Address, City, Zip, Data Source, Parcel Data (Year Built, Basement yes/no, Number of Floors) Zoning Data (Main Building, Out Building, Garage), First Floor Elevation, Rough Building Height, X/Y Coordinates, Dimensions. Confidence Levels/Methods:Address data: 90% All Buildings should have an address if they appear to be a building that would normally need an address (Main Residence). To create an address, we do a spatial join on the parcels from the centroid of a building polygon and extract the address data and APN. To collect the missing addresses, we can do a spatial join between the master address and the parcels and then the parcels back to the building polygons. Using a summarize to the APN field we will be able to identify the parcels that have multiple buildings and delete the address information for the buildings that are not a main residence.Building Type Data: 99% All buildings should have a building type according to the site use category code provided from the parcel table information. To further classify multiple buildings on parcels in residential areas, the shape area field was used to identify building polygons greater than 600 square feet as an occupied residence and all other buildings less than that size as outbuildings. All parcels, inparticular parcels with multiple buildings, are subject to classification error. Further defining could be possible with extensive quality control APN Data: 98% All buildings have received APN data from their associated parcel after a spatial join was performed. Building overlapping parcel lines had their centroid derived which allowed for an accurate spatial join.Troubleshooting Required: Buildings would sometimes overlap parcel lines making spatial joining inaccurate. To fix this you create a point from the centroid of the building polygon, join the parcel information to the point, then join the point with the parcel information back to the building polygon.

  2. v

    VT Data - E911 Site Locations (address points)

    • anrgeodata.vermont.gov
    • geodata.vermont.gov
    • +6more
    Updated Dec 19, 1996
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (1996). VT Data - E911 Site Locations (address points) [Dataset]. https://anrgeodata.vermont.gov/datasets/b226846d719a4b3fa59485a41aed1ddf
    Explore at:
    Dataset updated
    Dec 19, 1996
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Vermont E911 Site locations (ESITEs) including buildings, facilities, and development sites; locations are represented by points. Points are attributed with addresses--composing an address points layer. Dataset is updated weekly.Field Descriptions:OBJECTID: Internal feature number. Auto-generated by Esri software.SEGMENTID: Unique segment ID.ESITEID: Unique ESITE ID.GEONAMEID: Ties ESITE to GEONAMEID (unique ID for each road name) in VT E911 Road Centerlines.PD: Prefix Direction, previously name PRE.DIR.PT: Prefix Type.SN: Street Name. Previously named STREET.ST: Street Type.SD: Suffix Direction, i.e., W for West, E for East etc.PRIMARYNAME: A concatenation of the street-name parts (PD, PT, SN, ST, SD).ALIAS1: Alternate road name.ALIAS2: Alternate road name.ALIAS3: Alternate road name.ALIAS4: Alternate road name.ALIAS5: Alternate road name.PRIMARYADDRESS: A concatenation of house number and street-name parts (PD, PT, SN, ST, SD).SITETYPE: Type of site. Uses SiteTypes domain*.TOWNNAME: Town name.MCODE: Municpal code.ESN: Emergency Service Number. Developed for each town that indicates a unique town code for each law, fire, and EMS provider. These providers are compared against the master list to determine if they are already present. If they are, the existing state code is used. If the provider is new, they are added to the state master list with the next unique provider number.ZIP: Zip code.PARCELNUM: Parcel number.GPSX: GPS X coordinate.GPSY: GPS Y coordinate.MAPYEAR: Date added to E911 data.UPDATEDATE: Update date.STATE: US State.FIPS8: Federal information processing standards codes.SPAN: Pulled from the VCGI parcel dataset via spatial join 1-3 times per year; NOT MAINTAINED DAILY.SUBTYPE: Field not in use.GlobalID_1: System-generated ID.UNITCOUNT: For commercial and residential, number of units in the site.PRIMARYADD1: Concatenation of house number, full street name, and E911 town. E911 TOWN (AKA E911 JBOUND) IS NOT ALWAYS THE SAME AS POSTAL TOWN NOR IS IT ALWAYS THE SAME AS TOWN DEFINED BY MUNICIPAL BOUNDARY. E911 TOWN (E911 JBOUND) was originally defined for the Master Street Address Guide (MSAG) Community; E911 JBOUND contains names chosen by towns for representing town names for 911 purposes.PRIMARYADD2: Concatenation of PRIMARYADD1 plus zip code.SITETYPE_MULTI1: Additional SITETYPE--if applicable. For development sites, contains the main use the site is to become. Uses SiteTypes domain*.SITETYPE_MULTI2: Additional SITETYPE--if applicable. For development sites, contains the main use the site is to become. Uses SiteTypes domain*.SITETYPE_MULTI3: Additional SITETYPE--if applicable. For development sites, contains the main use the site is to become. Uses SiteTypes domain*.SITETYPE_MULTI4: Additional SITETYPE--if applicable. For development sites, contains the main use the site is to become. Uses SiteTypes domain*.SITETYPE_MULTI5: Additional SITETYPE--if applicable. For development sites, contains the main use the site is to become. Uses SiteTypes domain*.COUNTY: County.COUNTRY: Country.SOURCEOFDATA: Source of data.DRIVEWAYID: Field not in use.ESZ: Emergency Service Zone--a defined area covered by four primary-response agencies.HOUSE_NUMBER: House number.HOUSE_NUMBERSUFFIX: For addresses not in compliance with standards (typically in urbanized areas where otherwise renumbering needs to occur). For example, a new house between 8 and 10 is built and the town calls it 8 1/2 or 8A instead of renumbering; the 1/2 or A would be in this field; there are approximately less than 300-400 of these cases.HOUSE_NUMBERPREFIX: For the three streets where alpha characters come before the house number (e.g., A20 or B12).FIPS: County FIPS number.Shape: Feature geometry.*SiteTypes Domain:ABANDONEDACCESS POINTACCESSORY BUILDINGAIR SUPPORT / MAINTENANCE FACILITYAIR TRAFFIC CONTROL CENTER / COMMAND CENTERAIRPORT TERMINALAMBULANCE SERVICEAUDITORIUM / CONCERT HALL / THEATER / OPERA HOUSEBANKBOAT RAMP / DOCKBORDER CROSSINGBORDER PATROLBUS STATION / DISPATCH FACILITYCAMPCAMPGROUNDCEMETERYCITY / TOWN HALLCOAST GUARDCOLLEGE / UNIVERSITYCOMMERCIALCOMMERCIAL CONSTRUCTION SERVICECOMMERCIAL FARMCOMMERCIAL GARAGECOMMERCIAL W/RESIDENCECOMMUNICATION BOXCOMMUNICATION TOWERCOMMUNITY / RECREATION FACILITYCOURT HOUSECULTURALCUSTOMS SERVICEDAY CARE FACILITYDEVELOPMENT SITEEBS TOWEREDUCATIONALEMERGENCY PHONE / CALLBOXFAIR / EXHIBITION/ RODEO GROUNDSFERRY TERMINAL / DISPATCH FACILITYFIRE STATIONFISH FARM / HATCHERYFITNESS FACILITYFOOD DISTRIBUTION CENTERGAS STATIONGATED W/BUILDINGGATED W/O BUILDINGGOLF COURSEGOVERNMENTGRAVEL PITGREENHOUSE / NURSERYGROCERY STOREHARBOR / MARINAHAZARDOUS MATERIALS FACILITYHAZARDOUS STORAGE FACILITYHEALTH CLINICHELIPAD / HELIPORT / HELISPOTHISTORIC SITE / POINT OF INTERESTHOSPITAL / MEDICAL CENTERHOUSE OF WORSHIPHYDROELECTRIC FACILITYICE ARENAINDUSTRIALINSTITUTIONAL RESIDENCE / DORM / BARRACKSLANDFILLLAW ENFORCEMENTLIBRARYLODGINGLOOKOUT TOWERLUMBER MILL / SAW MILLMANUFACTURING FACILITYMINEMOBILE HOMEMORGUEMULTI-FAMILY DWELLINGMUSEUMNATIONAL GUARD / ARMORYNUCLEAR FACILITYNURSING HOME / LONG TERM CAREOFFICE BUILDINGOFFICE OF EMERGENCY MANAGEMENTOIL / GAS FACILITYOTHEROTHER COMMERCIALOTHER RESIDENTIALOUTPATIENT CLINICPARK AND RIDE / COMMUTER LOTPHARMACYPICNIC AREAPOST OFFICEPRISON / CORRECTIONAL FACILITYPRIVATE AND EXPRESS SHIPPING FACILITYPSAPPUBLIC BEACHPUBLIC GATHERINGPUBLIC TELEPHONEPUBLIC WATER SUPPLY INTAKEPUBLIC WATER SUPPLY WELLPUMP STATIONRACE TRACK / DRAGSTRIPRADIO / TV BROADCAST FACILITYRAILROAD STATIONRESIDENTIAL FARMREST STOP / ROADSIDE PARKRESTAURANTRETAIL FACILITYRV HOOKUPSCHOOLSEASONAL HOMESINGLE FAMILY DWELLINGSKI AREA / ALPINE RESORTSOLAR FACILITYSPORTS ARENA / STADIUMSTATE CAPITOLSTATE GARAGESTATE GOVERNMENT FACILITYSTATE PARKSTORAGE UNITSSUBSTATIONSUGARHOUSETEMPORARY STRUCTURETOWN GARAGETOWN OFFICETRAILHEADTRANSFER STATIONUNKNOWNUS FOREST FACILITYUS GOVERNMENT FACILITYUTILITYUTILITY POLE W/PHONEVETERINARY HOSPITAL / CLINICVISITOR / INFORMATION CENTERWAREHOUSEWASTE / BIOMASS FACILITYWASTEWATER TREATMENT PLANTWATER TANKWATER TOWERWIND FACILITY / WIND TOWERYOUTH CAMP

  3. c

    Job Centers - SCAG region

    • hub.scag.ca.gov
    • hub.arcgis.com
    Updated Mar 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2021). Job Centers - SCAG region [Dataset]. https://hub.scag.ca.gov/items/5a9796e44aba46f1b217af1b211ce2ac
    Explore at:
    Dataset updated
    Mar 12, 2021
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    Data Source: The primary data source used for this analysis are point-level business establishment data from InfoUSA. This commercial database produced by InfoGroup provides a comprehensive list of businesses in the SCAG region, including their industrial classification, number of employees, and several additional fields. Data have been post-processed for accuracy by SCAG staff and have an effective date of 2016. Locally-weighted regression: First, the SCAG region is overlaid with a grid, or fishnet, of 1km, 2km, and ½-km per cell. At the 1km cell size, there are 16,959 cells covering the SCAG region. Using the Spatial Join feature in ArcGIS, a sum total of business establishments and total employees (i.e., not separated by industrial classification) were joined to each grid cell. Note that since cells are of a standard size, the employment total in a cell is the equivalent of the employment density. A locally-weighted regression (LWR) procedure was developed using the R Statistical Software package in order to identify subcenters. The below procedure is described for 1km grid cells, but was repeated for 2km and 1/2km cells. 1.) Identify local maxima candidates. Using R’s lwr package, each cell’s 120 nearest neighbors, corresponding to roughly 5.5 km in each direction, was explored to identify high outliers or local maxima based on the total employment field. Cells with a z-score of above 2.58 were considered local maxima candidates. 2.) Identify local maxima. LWR can result in local maxima existing within close proximity. This step used a .dbf-format spatial weights matrix (knn=120 nearest neighbors) to identify only cells which are higher than all of their 120 nearest neighbors. At the 1km scale, 84 local maxima were found, which will form the “peak” of each individual subcenter. 3.) Search adjacent cells to include as part of each subcenter. In order to find which cells also are part of each local maximum’s subcenter, we use a queen (adjacency) contiguity matrix to search adjacent cells up to 120 nearest neighbors, adding cells if they are also greater than the average density in their neighborhood. A total of 695 cells comprise subcenters at the 1km scale. A video from Kane et al. (2018) demonstrates the above aspects of the methodology (please refer to 0:35 through 2:35 of https://youtu.be/ylTWnvCCO54), with the following differences: - Different years and slightly different post-processing steps for InfoUSA data - Video study covers 5-county region (Imperial county not included) - Limited to 1km scale subcenters - Due to these differences, the final map of subcenters is different. A challenge arises in that using 1km grid cells may fail to identify the correct local maximum for a particularly large employment center whose experience of high density occurs over a larger area. The process was repeated at a 2km scale, resulting in 54 “coarse scaled” subcenters. Similarly, some centers may exist with a particularly tightly-packed area of dense employment which is not detectable at the medium, 1km scale. The process was repeated again with ½-km grid cells, resulting in 95 “fine scaled” subcenters. In many instances, boundaries of fine, medium, and coarse scaled subcenters were similar, but differences existed. The final step involved qualitatively comparing results at each scale to create the final map of 69 job centers across the region. Most centers are medium scale, but some known areas of especially employment density were better captured at the 2km scale while . Giuliano and Small’s (1991) “ten jobs per acre” threshold was used as a rough guide to test for reasonableness when choosing a larger or smaller scale. For example, in some instances, a 1km scale included much additional land which reduced job density well below 10 jobs per acre. In this instance, an overlapping or nearby 1/2km scaled center provided a better reflection of the local employment peak. Ultimately, the goal was to identify areas where job density is distinct from nearby areas.

  4. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    South Korea, Japan, Germany, Europe, United Arab Emirates, South America, North America, Brazil, United States, United Kingdom
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion, at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth, driven by the increasing integration of Building Information Modeling (BIM) and GIS technologies. This convergence enables more effective spatial analysis and decision-making in various industries, particularly in soil and water management. However, the market faces challenges, including the lack of comprehensive planning and preparation leading to implementation failures of GIS solutions. Companies must address these challenges by investing in thorough project planning and collaboration between GIS and BIM teams to ensure successful implementation and maximize the potential benefits of these advanced technologies.
    By focusing on strategic planning and effective implementation, organizations can capitalize on the opportunities presented by the growing adoption of GIS and BIM technologies, ultimately driving operational efficiency and innovation.
    

    What will be the Size of the GIS Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The global Geographic Information Systems (GIS) market continues to evolve, driven by the increasing demand for advanced spatial data analysis and management solutions. GIS technology is finding applications across various sectors, including natural resource management, urban planning, and infrastructure management. The integration of Bing Maps, terrain analysis, vector data, Lidar data, and Geographic Information Systems enables precise spatial data analysis and modeling. Hydrological modeling, spatial statistics, spatial indexing, and route optimization are essential components of GIS, providing valuable insights for sectors such as public safety, transportation planning, and precision agriculture. Location-based services and data visualization further enhance the utility of GIS, enabling real-time mapping and spatial analysis.

    The ongoing development of OGC standards, spatial data infrastructure, and mapping APIs continues to expand the capabilities of GIS, making it an indispensable tool for managing and analyzing geospatial data. The continuous unfolding of market activities and evolving patterns in the market reflect the dynamic nature of this technology and its applications.

    How is this GIS Industry segmented?

    The GIS industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    The Global Geographic Information System (GIS) market encompasses a range of applications and technologies, including raster data, urban planning, geospatial data, geocoding APIs, GIS services, routing APIs, aerial photography, satellite imagery, GIS software, geospatial analytics, public safety, field data collection, transportation planning, precision agriculture, OGC standards, location intelligence, remote sensing, asset management, network analysis, spatial analysis, infrastructure management, spatial data standards, disaster management, environmental monitoring, spatial modeling, coordinate systems, spatial overlay, real-time mapping, mapping APIs, spatial join, mapping applications, smart cities, spatial data infrastructure, map projections, spatial databases, natural resource management, Bing Maps, terrain analysis, vector data, Lidar data, and geographic information systems.

    The software segment includes desktop, mobile, cloud, and server solutions. Open-source GIS software, with its industry-specific offerings, poses a challenge to the market, while the adoption of cloud-based GIS software represents an emerging trend. However, the lack of standardization and interoperability issues hinder the widespread adoption of cloud-based solutions. Applications in sectors like public safety, transportation planning, and precision agriculture are driving market growth. Additionally, advancements in technologies like remote sensing, spatial modeling, and real-time mapping are expanding the market's scope.

    Request Free Sample

    The Software segment was valued at USD 5.06 billion in 2019 and sho

  5. 2021 North Florida TPO National Accessibility Evaluation Data

    • gis-fdot.opendata.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 North Florida TPO National Accessibility Evaluation Data [Dataset]. https://gis-fdot.opendata.arcgis.com/content/7caa0a8dfdaf4443b168e988a2ce845f
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  6. u

    Utah Open Source Places

    • opendata.gis.utah.gov
    • gis-support-utah-em.hub.arcgis.com
    • +2more
    Updated Mar 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2022). Utah Open Source Places [Dataset]. https://opendata.gis.utah.gov/datasets/utah-open-source-places/about
    Explore at:
    Dataset updated
    Mar 18, 2022
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Last update: October 16, 2025 OverviewThis point data was generated and filtered from OpenStreetMap and is intended to represent places of interest in the state of Utah. These may include businesses, restaurants, places of worship, airports, parks, schools, event centers, apartment complexes, hotels, car dealerships…almost anything that you can find in OpenStreetMap (OSM). There are over 23,000 features in the original dataset (March 2022) and users can directly contribute to it through openstreetmap.org. This data is updated approximately once every month and will likely continue to grow over time with user activity. Data SourcesThe original bulk set of OSM data for the state of Utah is downloaded from Geofabrik: https://download.geofabrik.de/north-america/us/utah-latest-free.shp.zipAdditional attributes for the Utah features are gathered via the Overpass API using the following query: https://overpass-turbo.eu/s/1geRData Creation ProcessThe Open Source Places layer is created by a Python script that pulls statewide OSM data from a nightly archive provided by Geofabrik (https://www.geofabrik.de/data/download.html). The archive data contains nearly 20 shapefiles, some that are relevant to this dataset and some that aren't. The Open Source Places layer is built by filtering the polygon and point data in those shapefiles down to a single point feature class with specific categories and attributes that UGRC determines would be of widest interest. The polygon features (buildings, areas, complexes, etc.) are converted to points using an internal centroid. Spatial filtering is done as the data from multiple shapefiles is combined into a single layer to minimize the occurrence of duplicate features. (For example, a restaurant can be represented in OSM as both a point of interest and as a building polygon. The spatial filtering helps reduce the chances that both of these features are present in the final dataset.) Additional de-duplication is performed by using the 'block_id' field as a spatial index, to ensure that no two features of the same name exist within a census block. Then, additional fields are created and assigned from UGRC's SGID data (county, city, zip, nearby address, etc.) via point-in-polygon and near analyses. A numeric check is done on the 'name' field to remove features where the name is less than 3 characters long or more than 50% numeric characters. This eliminates several features derived from the buildings layer where the 'name' is simply an apartment complex building number (ex: 3A) or house number (ex: 1612). Finally, additional attributes (osm_addr, opening_hours, phone, website, cuisine, etc.) are pulled from the Overpass API (https://wiki.openstreetmap.org/wiki/Overpass_API) and joined to the filtered data using the 'osm_id' field as the join key. Field Descriptionsaddr_dist - the distance (m) to the nearest UGRC address point within 25 mosm_id - the feature ID in the OSM databasecategory - the feature's data class based on the 4-digit code and tags in the OSM databasename - the name of the feature in the OSM databasecounty - the county the feature is located in (assigned from UGRC's county boundaries)city - the city the feature is located in (assigned from UGRC's municipal boundaries)zip - the zip code of the feature (assigned from UGRC's approximation of zip code boundaries)block_id - the census block the feature is located in (assigned from UGRC's census block boundaries)ugrc_addr - the nearest address (within 25 m) from the UGRC address point databasedisclaimer - a note from UGRC about the ugrc_near_addr fieldlon - the approximate longitude of the feature, calculated in WGS84 EPSG:4326lat - the approximate latitude of the feature, calculated in WGS84 EPSG:4326amenity - the amenity available at the feature (if applicable), often similar to the categorycuisine - the type of food available (if applicable), multiple types are separated by semicolons (;)tourism - the type of tourist location, if applicable (zoo, viewpoint, hotel, attraction, etc.)shop - the type of shop, if applicablewebsite - the feature's website in the OSM database, if availablephone - the feature's phone number(s) in the OSM database, if availableopen_hours - the feature's operating hours in the OSM database, if availableosm_addr - the feature's address in the OSM database, if availableMore information can be found on the UGRC data page for this layer:https://gis.utah.gov/data/society/open-source-places/

  7. Data from: Edge-bundled spatial layer to visualize mobility flows in Europe...

    • zenodo.org
    • data-staging.niaid.nih.gov
    bin, png
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oula Inkeröinen; Oula Inkeröinen; Tuomas Väisänen; Tuomas Väisänen; Olle Järv; Olle Järv (2024). Edge-bundled spatial layer to visualize mobility flows in Europe on NUTS 2 level [Dataset]. http://doi.org/10.5281/zenodo.14380383
    Explore at:
    png, binAvailable download formats
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Oula Inkeröinen; Oula Inkeröinen; Tuomas Väisänen; Tuomas Väisänen; Olle Järv; Olle Järv
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Description of edge-bundled spatial layer

    This repository contains a GeoPackage of edge-bundled line geometries between the centroids of all https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units/territorial-units-statistics" target="_blank" rel="noopener">NUTS 2 regions in continental Europe. The centroids of the NUTS 2 regions are derived from the 2021 version of the regions. The spatial layer contains just the edge-bundled lines, and no values for the flows. The coordinate reference system used is the https://epsg.io/3035" target="_blank" rel="noopener">ETRS89-extended / LAEA Europe (EPSG:3035) commonly used by The European Union.

    This data is made to support the visualization of complex origin-destination matrix mobility data on the NUTS 2 level in Europe. Straight line geometries between origin and destination points can lose their legibility when the number of flows gets high.

    Usage

    To use the spatial layer, combine the provided GeoPackage with your origin-destination matrix data, such as migration, student exchange, or some other flow data. The edge-bundled flows has a directionality-preserving column for joining the flows (OD_ID). This can be done in QGIS/ArcGIS with a table join or in R/Python with a data frame merge.

    Data structure

    ColumnDescriptionDatatype
    fidUnique identifier for a row in the dataInteger (64 bit)
    orig_nutsThe NUTS 2 code of the origin.String
    dest_nutsThe NUTS 2 code of the destination.String
    OD_IDUnique identifier for the mobility using the NUTS 2 codes for origin and destination. E.g., FI1B_DK03String

    Production code

    The spatial layer was produced by the https://doi.org/10.5281/zenodo.14532547">Edge-bundling tool for regional mobility flow data, which is a fork of a similar tool by Ondrej Peterka (2024), which is based on the work of Wallinger et al., (2022).

    References

    Peterka, O. (2024). Xpeterk1/edge-path-bundling [Python, C++]. https://github.com/xpeterk1/edge-path-bundling (Original work published 2023)
    Wallinger, M., Archambault, D., Auber, D., Nöllenburg, M., & Peltonen, J. (2022). Edge-Path Bundling: A Less Ambiguous Edge Bundling Approach. IEEE Transactions on Visualization and Computer Graphics, 28(1), 313–323. https://doi.org/10.1109/TVCG.2021.3114795
  8. D

    King County Assessor Residential Unit Types and Sizes

    • data.seattle.gov
    • catalog.data.gov
    • +2more
    csv, xlsx, xml
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). King County Assessor Residential Unit Types and Sizes [Dataset]. https://data.seattle.gov/dataset/King-County-Assessor-Residential-Unit-Types-and-Si/ri3y-zeyp
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Nov 11, 2025
    Area covered
    King County
    Description
    PLEASE NOTE: If choosing the Download option of "Spreadsheet" the field PIN is reformatted to a number - you will need to format it as a 10 character text string with leading zeros to join this data with data from King County.

    King County Assessor (KCA) data has been compiled to create a dataset of unit types and sizes by tax parcel identification number (PIN). City of Seattle spatial overlay data has been assigned through geographic overlay processes. This data is updated periodically and is used to support the analytical and reporting functions of the City of Seattle long-range and policy planning office.

    See the data in action in this dashboard.

    The table includes attribute data from the King County Assessor tables that characterize the use, number of units, number of bedrooms and building square footage (net) for all buildings that indicate a residential use. Due to the way KCA reports the data, some records are for all units within individual buildings (residential and commercial building records), while other records are for the combination of unit type and number of bedrooms (apartment and condominium records) on a particular property (called complex in the table). Therefore there may be many records for any given PIN.

    Some unit counts and type assignments have been imputed based on other data to allow characterization of the complete data set. Other fields have been added to aid in classification for planning purposes such as the complex category. Every effort is made to characterize the data accurately.

    Spatial overlay data for various City of Seattle reporting geographies are assigned as "majority rules" by land area in cases where multiple geographies span a single tax parcel.

    KCA tax parcels are created by King County for property tax assessment and collection and may not match development sites as defined by the City of Seattle (single buildings may span multiple tax parcels), may be stacked on top of each other to represent undivided interest and vertical parcels, or may be made up of several sites that are not contiguous.

    Attributes include parcel centroid locations in latitude/longitude and Washington State Plane X,Y. To get polygon representation of the data please see King County's open data page for parcels and join this table through the PIN field. Please be aware that the King County Assessor site address is not a postal address and may not match other address sources for the same property such as postal, utility billing, and permitting.

    See the detailed data dictionaries for the King County Assessor tables for more information.
  9. v

    Parcels and MOD-IV of Bergen County, NJ (fgdb download)

    • anrgeodata.vermont.gov
    • njogis-newjersey.opendata.arcgis.com
    • +2more
    Updated Dec 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Jersey Office of GIS (2024). Parcels and MOD-IV of Bergen County, NJ (fgdb download) [Dataset]. https://anrgeodata.vermont.gov/documents/920feb01c4544e5397b05e15f844d640
    Explore at:
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    New Jersey Office of GIS
    Area covered
    Description

    This parcels data set is a spatial representation of municipal tax lots for Bergen County, New Jersey that have been extracted from the NJ statewide parcels composite by the NJ Office of Information Technology, Office of GIS (NJOGIS). Parcels at county boundaries have been modified to correspond with the NJ county boundaries and the parcels in adjacent counties.Each parcel contains a field named PAMS_PIN based on a concatenation of the county/municipality code, block number, lot number and qualification code. Using the PAMS_PIN, the dataset can be joined to the MOD-IV database table that contains supplementary attribute information regarding lot ownership and characteristics. Due to irregularities in the data development process, duplicate PAMS_PIN values exist in the parcel records. Users should avoid joining MOD-IV database table records to all parcel records with duplicate PAMS_PINs because of uncertainty regarding whether the MOD-IV records will join to the correct parcel records. There are also parcel records with unique PAMS_PIN values for which there are no corresponding records in the MOD-IV database tables. This is mostly due to the way data are organized in the MOD-IV database.The polygons delineated in the dataset do not represent legal boundaries and should not be used to provide a legal determination of land ownership. Parcels are not survey data and should not be used as such.The MOD-IV (Tax Assessor's) table for the county is packaged together with the parcels as one download. The MOD-IV system provides for uniform preparation, maintenance, presentation and storage of property tax information required by the Constitution of the State of New Jersey, New Jersey Statutes and rules promulgated by the Director of the Division of Taxation. MOD-IV maintains and updates all assessment records and produces all statutorily required tax lists for property tax bills. This list accounts for all parcels of real property as delineated and identified on each municipality's official tax map, as well as taxable values and descriptive data for each parcel. Tax List records were received as raw data from the Taxation Team of NJOIT which collected source information from municipal tax assessors and created the statewide table. This table was subsequently processed for ease of use with NJ tax parcel spatial data and split into an individual table for each county.***NOTE*** For users who incorporate NJOGIS services into web maps and/or web applications, please sign up for the NJ Geospatial Forum discussion listserv for early notification of service changes. Visit https://nj.gov/njgf/about/listserv/ for more information.

  10. v

    Parcels and MOD-IV of Gloucester County, NJ (shp download)

    • anrgeodata.vermont.gov
    • njogis-newjersey.opendata.arcgis.com
    • +2more
    Updated Dec 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Jersey Office of GIS (2024). Parcels and MOD-IV of Gloucester County, NJ (shp download) [Dataset]. https://anrgeodata.vermont.gov/documents/70c5b83e661f4d17b14a54642ba07439
    Explore at:
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    New Jersey Office of GIS
    Area covered
    Description

    This parcels dataset is a spatial representation of tax lots for Gloucester County, New Jersey that have been extracted from the NJ statewide parcels composite by the NJ Office of Information Technology, Office of GIS (NJOGIS). Parcels at county boundaries have been modified to correspond with the NJ county boundaries and the parcels in adjacent counties.Each parcel contains a field named PAMS_PIN based on a concatenation of the county/municipality code, block number, lot number and qualification code. Using the PAMS_PIN, the dataset can be joined to the MOD-IV database table that contains supplementary attribute information regarding lot ownership and characteristics. Due to irregularities in the data development process, duplicate PAMS_PIN values exist in the parcel records. Users should avoid joining MOD-IV database table records to all parcel records with duplicate PAMS_PINs because of uncertainty regarding whether the MOD-IV records will join to the correct parcel records. There are also parcel records with unique PAMS_PIN values for which there are no corresponding records in the MOD-IV database tables. This is mostly due to the way data are organized in the MOD-IV database.The polygons delineated in the dataset do not represent legal boundaries and should not be used to provide a legal determination of land ownership. Parcels are not survey data and should not be used as such.The MOD-IV system provides for uniform preparation, maintenance, presentation and storage of property tax information required by the Constitution of the State of New Jersey, New Jersey Statutes and rules promulgated by the Director of the Division of Taxation. MOD-IV maintains and updates all assessment records and produces all statutorily required tax lists for property tax bills. This list accounts for all parcels of real property as delineated and identified on each municipality's official tax map, as well as taxable values and descriptive data for each parcel. Tax List records were received as raw data from the Taxation Team of NJOIT which collected source information from municipal tax assessors and created the statewide table. This table was subsequently processed for ease of use with NJ tax parcel spatial data and split into an individual table for each county.***NOTE*** For users who incorporate NJOGIS services into web maps and/or web applications, please sign up for the NJ Geospatial Forum discussion listserv for early notification of service changes. Visit https://nj.gov/njgf/about/listserv/ for more information.

  11. v

    Parcels and MOD-IV of Essex County, NJ (shp download)

    • anrgeodata.vermont.gov
    • hub.arcgis.com
    • +1more
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Jersey Office of GIS (2025). Parcels and MOD-IV of Essex County, NJ (shp download) [Dataset]. https://anrgeodata.vermont.gov/documents/34f9940598fc409094a28032e54c864e
    Explore at:
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    New Jersey Office of GIS
    Area covered
    Description

    This parcels dataset is a spatial representation of tax lots for Essex County, New Jersey that have been extracted from the NJ statewide parcels composite by the NJ Office of Information Technology, Office of GIS (NJOGIS). Parcels at county boundaries have been modified to correspond with the NJ county boundaries and the parcels in adjacent counties.Each parcel contains a field named PAMS_PIN based on a concatenation of the county/municipality code, block number, lot number and qualification code. Using the PAMS_PIN, the dataset can be joined to the MOD-IV database table that contains supplementary attribute information regarding lot ownership and characteristics. Due to irregularities in the data development process, duplicate PAMS_PIN values exist in the parcel records. Users should avoid joining MOD-IV database table records to all parcel records with duplicate PAMS_PINs because of uncertainty regarding whether the MOD-IV records will join to the correct parcel records. There are also parcel records with unique PAMS_PIN values for which there are no corresponding records in the MOD-IV database tables. This is mostly due to the way data are organized in the MOD-IV database.The polygons delineated in the dataset do not represent legal boundaries and should not be used to provide a legal determination of land ownership. Parcels are not survey data and should not be used as such.The MOD-IV system provides for uniform preparation, maintenance, presentation and storage of property tax information required by the Constitution of the State of New Jersey, New Jersey Statutes and rules promulgated by the Director of the Division of Taxation. MOD-IV maintains and updates all assessment records and produces all statutorily required tax lists for property tax bills. This list accounts for all parcels of real property as delineated and identified on each municipality's official tax map, as well as taxable values and descriptive data for each parcel. Tax List records were received as raw data from the Taxation Team of NJOIT which collected source information from municipal tax assessors and created the statewide table. This table was subsequently processed for ease of use with NJ tax parcel spatial data and split into an individual table for each county.***NOTE*** For users who incorporate NJOGIS services into web maps and/or web applications, please sign up for the NJ Geospatial Forum discussion listserv for early notification of service changes. Visit https://nj.gov/njgf/about/listserv/ for more information.

  12. a

    2021 Space Coast TPO National Accessibility Evaluation Data

    • hub.arcgis.com
    • performance-data-integration-space-fdot.hub.arcgis.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Space Coast TPO National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/ffaec25b31ac4b9180e49fcf38557505
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  13. BLM Natl Sheep and Goat Authorized Grazing Allotments

    • gbp-blm-egis.hub.arcgis.com
    • catalog.data.gov
    Updated Jun 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2022). BLM Natl Sheep and Goat Authorized Grazing Allotments [Dataset]. https://gbp-blm-egis.hub.arcgis.com/datasets/blm-natl-sheep-and-goat-authorized-grazing-allotments
    Explore at:
    Dataset updated
    Jun 13, 2022
    Dataset authored and provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Area covered
    Description

    This feature class was derived from the GIS polygon dataset BLM Grazing Allotments which was downloaded from the Geospatial Gateway in April 2025. Fields were added to the feature classes and calculated as needed to allow the Rangeland Administration System (RAS) tabular data to be joined to the GIS datasets. RAS tabular data for Authorized allotments and pastures (as of April 2025) was provided by BLM Rangeland Management Specialist Josh Robbins in April 2025 and processed as dbfs, with fields added and calculated as needed to match the BLM GIS Grazing Allotments feature class. RAS tables and BLM GIS data for allotments were joined using the State Allotment Number, a concatenation of allotment number and BLM Administrative State for allotments (ST_ALLOT_NUM). RAS records for Authorized Allotments that did not match during a join operation were tracked in a separate excel sheet from the matching records. Matching records were then joined back to the BLM GIS Allotments grazing feature class and Allotment name fields were edited as necessary. A Status field was added to indicate if the data are either Billed or Authorized and a Source field was added to indicate that the data came from Allotments or Trailing Allotments. An additional field, TR_ALLOT_NUM, was added to designate any Trailing Allotments in the data. Trailing allotments were identified and processed separately for Nevada, since these allotments overlap portions of other allotments. Any overlaps in the data were removed via dissolve and Spatial Join.Input BLM GIS Grazing data:BLM Grazing Pastures and BLM Grazing Allotments are areas of land designated and managed for grazing of livestock. It may include private, state, and public lands under the jurisdiction of the Bureau of Land Management and/or other federal agencies. An allotment is derived from its pastures, where the grazing of livestock is occurring. The attributes of the BLM Grazing Allotment features may be duplicated in RAS, but are considered to be minimum information for unique identification and cartographic purposes.Input RAS Data:The Rangeland Administration System (RAS) provides grazing administrative support and management reports for the BLM and the public. The Rangeland Administration system serves as an electronic calendar for issuance of applications and grazing authorizations, including Permits, Leases, and Exchange-of-Use Agreements. The Authorized data is current as of April 2025 and was provided by BLM Rangeland Management Specialist Josh Robbins in April 2025.

  14. a

    2021 Pinellas County MPO National Accessibility Evaluation Data

    • hub.arcgis.com
    • gis-fdot.opendata.arcgis.com
    • +2more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Pinellas County MPO National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/e86c52ae02d34f73b894cd2f66f0341f
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  15. a

    2021 Lake Sumter MPO National Accessibility Evaluation Data

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gis-fdot.opendata.arcgis.com
    • +1more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Lake Sumter MPO National Accessibility Evaluation Data [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/1a0472af32504d478ec3ba87ba299f1c
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  16. 2021 Capital Region TPA National Accessibility Evaluation Data

    • gis-fdot.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Capital Region TPA National Accessibility Evaluation Data [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/2021-capital-region-tpa-national-accessibility-evaluation-data
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  17. a

    2021 Pasco County MPO National Accessibility Evaluation Data

    • hub.arcgis.com
    • gis-fdot.opendata.arcgis.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Pasco County MPO National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/ee6352ee6aed41b68ec190ee1335f009
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  18. a

    2021 St. Lucie TPO National Accessibility Evaluation Data

    • hub.arcgis.com
    • gis-fdot.opendata.arcgis.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 St. Lucie TPO National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/975a8a6656e84a3da96b5fc7a873b5f9
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  19. 2021 Hernando Citrus County MPO National Accessibility Evaluation Data

    • gis-fdot.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Hernando Citrus County MPO National Accessibility Evaluation Data [Dataset]. https://gis-fdot.opendata.arcgis.com/content/dd39afcf2dca437ea94dc6ce69fbdac8
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  20. a

    2021 Miami Dade MPO National Accessibility Evaluation Data

    • mapdirect-fdep.opendata.arcgis.com
    • performance-data-integration-space-fdot.hub.arcgis.com
    • +1more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Miami Dade MPO National Accessibility Evaluation Data [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/datasets/fdot::2021-miami-dade-mpo-national-accessibility-evaluation-data
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
County of Ventura (2024). Building Footprints [Dataset]. https://venturacountydatadownloads-vcitsgis.hub.arcgis.com/datasets/cb6bb4a603e14b75ab05e71c64b1f07d

Building Footprints

Explore at:
Dataset updated
Apr 24, 2024
Dataset authored and provided by
County of Ventura
Area covered
Description

Initial Data Capture: Building were originally digitized using ESRI construction tools such as rectangle and polygon. Textron Feature Analyst was then used to digitize buildings using a semi-automated polygon capture tool as well as a fully automated supervised learning method. The method that proved to be most effective was the semi-automated polygon capture tool as the fully automated process produced polygons that required extensive cleanup. This tool increased the speed and accuracy of digitizing by 40%.Purpose of Data Created: To supplement our GIS viewers with a searchable feature class of structures within Ventura County that can aid in analysis for multiple agencies and the public at large.Types of Data Used: Aerial Imagery (Pictometry 2015, 9inch ortho/oblique, Pictometry 2018, 6inch ortho/oblique) Simi Valley Lidar Data (Q2 Harris Corp Lidar) Coverage of Data:Buildings have been collected from the aerial imageries extent. The 2015 imagery coverage the south county from the north in Ojai to the south in thousand oaks, to the east in Simi Valley, and to the West in the county line with Santa Barbara. Lockwood Valley was also captured in the 2015 imagery. To collect buildings for the wilderness areas we needed to use the imagery from 2007 when we last flew aerial imagery for the entire county. 2018 Imagery was used to capture buildings that were built after 2015.Schema: Fields: APN, Image Date, Image Source, Building Type, Building Description, Address, City, Zip, Data Source, Parcel Data (Year Built, Basement yes/no, Number of Floors) Zoning Data (Main Building, Out Building, Garage), First Floor Elevation, Rough Building Height, X/Y Coordinates, Dimensions. Confidence Levels/Methods:Address data: 90% All Buildings should have an address if they appear to be a building that would normally need an address (Main Residence). To create an address, we do a spatial join on the parcels from the centroid of a building polygon and extract the address data and APN. To collect the missing addresses, we can do a spatial join between the master address and the parcels and then the parcels back to the building polygons. Using a summarize to the APN field we will be able to identify the parcels that have multiple buildings and delete the address information for the buildings that are not a main residence.Building Type Data: 99% All buildings should have a building type according to the site use category code provided from the parcel table information. To further classify multiple buildings on parcels in residential areas, the shape area field was used to identify building polygons greater than 600 square feet as an occupied residence and all other buildings less than that size as outbuildings. All parcels, inparticular parcels with multiple buildings, are subject to classification error. Further defining could be possible with extensive quality control APN Data: 98% All buildings have received APN data from their associated parcel after a spatial join was performed. Building overlapping parcel lines had their centroid derived which allowed for an accurate spatial join.Troubleshooting Required: Buildings would sometimes overlap parcel lines making spatial joining inaccurate. To fix this you create a point from the centroid of the building polygon, join the parcel information to the point, then join the point with the parcel information back to the building polygon.

Search
Clear search
Close search
Google apps
Main menu