100+ datasets found
  1. ACS Educational Attainment Variables - Centroids

    • mapdirect-fdep.opendata.arcgis.com
    Updated Oct 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Educational Attainment Variables - Centroids [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/82d3a33b93664638881e71d8658ff1e8
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the count of total adults (25+) and the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  2. Educational Attainment 2018-2022 - STATES

    • hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    Updated Feb 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Educational Attainment 2018-2022 - STATES [Dataset]. https://hub.arcgis.com/maps/a0ac7b199a45464f88862678a8c6b7f7
    Explore at:
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Educational Attainment. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the Population 25 years and over - Bachelor's Degree or higher (%). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  3. D

    OC Educational

    • detroitdata.org
    • data.ferndalemi.gov
    • +6more
    Updated Oct 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oakland County, Michigan (2020). OC Educational [Dataset]. https://detroitdata.org/dataset/oc-educational1
    Explore at:
    html, csv, arcgis geoservices rest api, zip, geojson, kmlAvailable download formats
    Dataset updated
    Oct 14, 2020
    Dataset provided by
    Oakland County, Michigan
    Description

    BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.

    This point feature class was created by geocoding the facility address as provided by Oakland Schools and ERP to Oakland County's Road Centerline feature class. The resulting points were georeferenced to the facility structure using Oakand County's 2002 orthoimagery at a reference scale of 1:1200.

    The key attributes include the facility Name, Address and Type (Elementary, Middle, High, Technical and College).

  4. GeoStrat Jurassic Report (ArcGIS Version)

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    • +1more
    html
    Updated Jul 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oil and Gas Authority (2018). GeoStrat Jurassic Report (ArcGIS Version) [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/MjE2NzI3ODMtMmIyMy00NGU1LWEzY2MtZjgwMjVkZDFiZjVl
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 21, 2018
    Dataset provided by
    North Sea Transition Authority
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben

    This non-exclusive report was purchased by the OGA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the OGA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities.

    The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report.

    The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms).

    In addition, the OGA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the OGA well names from the OGA Offshore Wells shapefile (as provided on the OGA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the OGA. OGA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the OGA.

    A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the OGA’s Open Data website for use in other GIS software packages.

    All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the OGA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

  5. d

    Schools with Average Commute 2013-14

    • catalog.data.gov
    • data.ferndalemi.gov
    • +7more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2025). Schools with Average Commute 2013-14 [Dataset]. https://catalog.data.gov/dataset/schools-with-average-commute-2013-14-7da51
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Data Driven Detroit
    Description

    The Michigan Center for Educational Performance and Information (CEPI), working with the Michigan Center for Shared Solutions (CSS) provided Data Driven Detroit (D3) with census block codes approximating student residence locations from the October 2013 student count for all students attending a public school in Detroit (DPS, Charter, EAA). With this data, D3 calculated the street-grid distance traveled from home (approximate location) to school for each student that attended a school in Detroit. We then calculated an average distance traveled by students of each school. Ann Arbor Magnet school (and possibly others) is not included in these data due to omission from the original data submission to D3. Average distances were calculated after first removing outlier student locations in counties outside of Wayne, Oakland, Macomb and Washtenaw. Distances were calculated using shortest distance routes from schools to the center of the Census Tract of residence.

  6. C

    DSM2 Georeferenced Model Grid

    • data.cnra.ca.gov
    • data.ca.gov
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). DSM2 Georeferenced Model Grid [Dataset]. https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
    Explore at:
    pdf(22679496), arcgis desktop map package(300515), zip(158973), pdf(22669649), zip(159621), pdf(20463896), zip(228604), arcgis desktop map package(211110), arcgis pro map package(153901), zip(26881), pdf(25962387), pdf(1443441), zip(140121)Available download formats
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    California Department of Water Resources
    Description

    ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.

    Monitoring Stations - shapefile with approximate locations of monitoring stations.

    DSM2 Grid 2025-05-28 Historical

    FC_2023.01

    DSM2 v8.2.0, calibrated version:

    • dsm2_8_2_grid_map_calibrated.mpkx - ArcGIS Pro map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_grid_map_calibrated.mpk - ArcGIS Desktop map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_grid_map_qgis.zip - QGIS map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_gridmap_shapefiles.zip - A zip file containing all the shapefiles used in the above map packages:
    • dsm2_8_2_0_calibrated_channels_centerlines - channel centerlines, follwing the path of CSDP centerlines
    • dsm2_8_2_0_calibrated_network_channels - channels represented by straight line segments which are connected the upstream and downstream nodes
    • dsm2_8_2_0_calibrated_nodes - DSM2 nodes
    • dsm2_8_2_0_calibrated_dcd_only_nodes - Nodes that are only used by DCD
    • dsm2_8_2_0_calibrated_and_dcd_nodes - Nodes that are shared by DSM2 and DCD
    • dsm2_8_2_0_calibrated_and_smcd_nodes - Nodes that are shared by DSM2 and SMCD
    • dsm2_8_2_0_calibrated_gates_actual_loc - The approximate actual locations of each gate in DSM2
    • dsm2_8_2_0_calibrated_gates_grid_loc - The locations of each gate in the DSM2 model grid
    • dsm2_8_2_0_calibrated_reservoirs - The approximate locations of the reservoirs in DSM2
    • dsm2_8_2_0_calibrated_reservoir_connections - Lines showing connections from reservoirs to nodes in DSM2

    DSM2 v8.2.1, historical version:

    • DSM2 v8.2.1, historical version grid map release notes (PDF), updated 7/12/2022
    • DSM2 v8.2.1, historical version grid map, single zoom level (PDF)
    • DSM2 v8.2.1, historical version grid map, multiple zoom levels (PDF) - PDF grid map designed to be printed on 3 foot wide plotter paper.
    • DSM2 v8.2.1, historical version map package for ArcGIS Desktop: A map package for ArcGIS Desktop containing the grid map layers with symbology.
    • DSM2 v8.2.1, historical version grid map shapefiles (zip): A zip file containing the shapefiles used in the grid map.

    Change Log

    7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.

  7. 2021 ArcGIS Online Comp for US HSMS Students ((OLDVERSION))

    • storymaps-k12.hub.arcgis.com
    Updated Aug 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri K12 GIS Organization (2021). 2021 ArcGIS Online Comp for US HSMS Students ((OLDVERSION)) [Dataset]. https://storymaps-k12.hub.arcgis.com/datasets/2021-arcgis-online-comp-for-us-hsms-students-oldversion
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri K12 GIS Organization
    Description

    Summary: NEW VERSION is at https://esriurl.com/agoschoolcompStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 6-8: Standard MS-LS4-4 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environmenGrade level(s) 6-8: Standard MS-LS4-6 - Biological Evolution: Unity and Diversity - Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over timeGrade level(s) 6-8: Standard MS-ESS1-2 - Earth’s Place in the Universe - Develop and use a model to describe the role of gravity in the motions within galaxies and the solar systemGrade level(s) 6-8: Standard MS-ESS2-4 - Earth’s Systems - Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravityGrade level(s) 9-12: Standard HS-PS1-2 - Matter and Its Interactions - Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical propertiesGrade level(s) 9-12: Standard HS-LS2-1 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scalesGrade level(s) 9-12: Standard HS-LS4-2 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.Most frequently used words:competitionesrihsstateApproximate Flesch-Kincaid reading grade level: 10.3. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

  8. g

    GeoStrat Jurassic Report (ArcGIS Version) | gimi9.com

    • gimi9.com
    Updated Jul 17, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). GeoStrat Jurassic Report (ArcGIS Version) | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_geostrat-jurassic-report-arcgis-version
    Explore at:
    Dataset updated
    Jul 17, 2017
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    🇬🇧 영국 English Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben This non-exclusive report was purchased by the OGA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the OGA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities. The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report. The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms). In addition, the OGA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the OGA well names from the OGA Offshore Wells shapefile (as provided on the OGA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the OGA. OGA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the OGA. A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the OGA’s Open Data website for use in other GIS software packages. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the OGA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

  9. Louisiana Dataset for ArcGIS

    • zenodo.org
    zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brendan Harmon; Brendan Harmon (2020). Louisiana Dataset for ArcGIS [Dataset]. http://doi.org/10.5281/zenodo.3484055
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Brendan Harmon; Brendan Harmon
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Louisiana
    Description

    Louisiana Dataset for ArcGIS
    This geodatabase contains statewide raster and vector data for Louisiana, USA in NAD 1983 / UTM zone 15N with EPSG code 26915. Unzip the archive and open in ArcGIS.

    Data Sources

    • USGS National Elevation Dataset (NED)
    • USGS National Landcover Dataset (NLCD)
    • USGS National Hydrography Dataset (NHD)
    • USGS National Transportation Dataset (NTD)
    • USGS National Boundary Dataset (NBD)

    License
    This dataset is licensed under the ODC Public Domain Dedication and License 1.0 (PDDL) by Brendan Harmon.

  10. d

    Batch Metadata Modifier Toolbar

    • catalog.data.gov
    Updated Nov 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho Library (2020). Batch Metadata Modifier Toolbar [Dataset]. https://catalog.data.gov/dataset/batch-metadata-modifier-toolbar
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    University of Idaho Library
    Description

    For more information about this tool see Batch Metadata Modifier Tool Toolbar Help.Modifying multiple files simultaneously that don't have identical structures is possible but not advised. Be especially careful modifying repeatable elements in multiple files that do not have and identical structureTool can be run as an ArcGIS Add-In or as a stand-alone Windows executableExecutable runs on PC only. (Not supported on Mac.)The ArcGIS Add-In requires ArcGIS Desktop version 10.2 or 10.3Metadata formats accepted: FGDC CSDGM, ArcGIS 1.0, ArcGIS ISO, and ISO 19115Contact Bruce Godfrey (bgodfrey@uidaho.edu, Ph. 208-292-1407) if you have questions or wish to collaborate on further developing this tool.Modifying and maintaining metadata for large batches of ArcGIS items can be a daunting task. Out-of-the-box graphical user interface metadata tools within ArcCatalog 10.x are designed primarily to allow users to interact with metadata for one item at a time. There are, however, a limited number of tools for performing metadata operations on multiple items. Therefore, the need exists to develop tools to modify metadata for numerous items more effectively and efficiently. The Batch Metadata Modifier Tools toolbar is a step in that direction. The Toolbar, which is available as an ArcGIS Add-In, currently contains two tools. The first tool, which is additionally available as a standalone Windows executable application, allows users to update metadata on multiple items iteratively. The tool enables users to modify existing elements, find and replace element content, delete metadata elements, and import metadata elements from external templates. The second tool of the Toolbar, a batch thumbnail creator, enables the batch-creation of the graphic that appears in an item’s metadata, illustrating the data an item contains. Both of these tools make updating metadata in ArcCatalog more efficient, since the tools are able to operate on numerous items iteratively through an easy-to-use graphic interface.This tool, developed by INSIDE Idaho at the University of Idaho Library, was created to assist researchers with modifying FGDC CSDGM, ArcGIS 1.0 Format and ISO 19115 metadata for numerous data products generated under EPSCoR award EPS-0814387.This tool is primarily designed to be used by those familiar with metadata, metadata standards, and metadata schemas. The tool is for use by metadata librarians and metadata managers and those having experience modifying standardized metadata. The tool is designed to expedite batch metadata maintenance. Users of this tool must fully understand the files they are modifying. No responsibility is assumed by the Idaho Geospatial Data Clearinghouse or the University of Idaho in the use of this tool. A portion of the development of this tool was made possible by an Idaho EPSCoR Office award.

  11. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. e

    OGA and Lloyd's Register SNS Regional Geological Maps (ArcGIS version)

    • data.europa.eu
    html
    Updated Oct 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oil and Gas Authority (2021). OGA and Lloyd's Register SNS Regional Geological Maps (ArcGIS version) [Dataset]. https://data.europa.eu/data/datasets/oga-and-lloyds-register-sns-regional-geological-maps-arcgis-version1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 6, 2021
    Dataset authored and provided by
    Oil and Gas Authority
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Contains a set of regional geological maps for the given area including: depth structure, isochores, subcrop and supercrop, structural elements, depositional facies, reservoir distribution, source rock, well penetration and hydrocarbon occurrence. Includes PDF documents with stratigraphic and petroleum systems charts and explanations of the various maps. Also include digital copies of sand flags (.las) and depth and thickness grids (.xyz).

  13. g

    NSTA and Lloyd's Register English Channel Regional Geological Maps (ArcGIS...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSTA and Lloyd's Register English Channel Regional Geological Maps (ArcGIS version) [Dataset]. https://gimi9.com/dataset/eu_nsta-and-lloyds-register-english-channel-regional-geological-maps-arcgis-version1
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    English Channel
    Description

    Due to the high level, regional nature of the project, the maps are being produced for the main geological time intervals e.g. Paleocene, Lower Cretaceous, Upper Jurassic. Each time interval includes the following products:• Depth structure maps• Isochore maps• Subcrop & supercrop maps• Structural elements maps• Depositional facies maps• Reservoir distribution maps• Source rock maps• Well penetration maps• Hydrocarbon occurrence maps

  14. World Imagery Wayback App

    • national-government.esrij.com
    • rwanda.africageoportal.com
    • +9more
    Updated Jun 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). World Imagery Wayback App [Dataset]. https://national-government.esrij.com/datasets/esri::world-imagery-wayback-app/about
    Explore at:
    Dataset updated
    Jun 29, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Wayback imagery is a digital archive of the World Imagery basemap, enabling users to access more than 100 different versions of World Imagery archived over the past 10 years. Each record in the archive represents a version of World Imagery as it existed on the date it was published.This app offers a dynamic Wayback browsing and discovery experience where previous versions of the World Imagery basemap are presented within the map, along a timeline, and as a list. Versions that resulted in local changes are dynamically presented to the user based on location and scale. Preview changes by hovering over and/or selecting individual layers. When ready, one or more Wayback layers can be added to an export queue and pushed to a new ArcGIS Online web map. Browse, preview, select, and create, it’s all there!For more information on Wayback check out these articles.You can also find every Wayback tile layer in the Wayback imagery group.

  15. National Hydrography Dataset Plus Version 2.1

    • gisnation-sdi.hub.arcgis.com
    • resilience.climate.gov
    • +4more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://gisnation-sdi.hub.arcgis.com/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  16. d

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • search.dataone.org
    • arcticdata.io
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://search.dataone.org/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  17. a

    Percentage of Students Passing H.S.A. Government

    • vital-signs-bniajfi.hub.arcgis.com
    • data.baltimorecity.gov
    • +1more
    Updated Feb 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Percentage of Students Passing H.S.A. Government [Dataset]. https://vital-signs-bniajfi.hub.arcgis.com/datasets/percentage-of-students-passing-h-s-a-government
    Explore at:
    Dataset updated
    Feb 26, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The percentage of high school students who have successfully passed the H.S.A. exams out of all high school students that took the exam in the school year (considering only the highest score per subject area). In Maryland, all students who entered 9th grade in or after 2005 are required to take and pass the High School Assessments (H.S.A.) in order to graduate, including students in special education, English language learners (ELLs), and students with 504 plans. There are currently three H.S.A. exams: English, Algebra/Data Analysis; and Biology (a H.S.A. in Government has since been discontinued). Students can retake the HSAs as many times as necessary to pass. Source: Baltimore City Public Schools Years Available: 2009-2010, 2010-2011, 2012-2013, 2013-2014

  18. e

    Add a comment on students maps or apps - Video

    • gisinschools.eagle.co.nz
    Updated May 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). Add a comment on students maps or apps - Video [Dataset]. https://gisinschools.eagle.co.nz/datasets/add-a-comment-on-students-maps-or-apps-video
    Explore at:
    Dataset updated
    May 15, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    When your students are creating web maps and apps in ArcGIS Online in the classroom you might want to pass comments electronically on this work. You can do this using the comments field for an item in ArcGIS Online. This video takes you through the steps of how to do this.ArcGIS Online Administration.Video Recorded April 2020.

  19. a

    1.18 Kid Zone Participation by Site (detail)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data-academy.tempe.gov
    • +8more
    Updated Jan 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2020). 1.18 Kid Zone Participation by Site (detail) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/tempegov::1-18-kid-zone-participation-by-site-detail/about
    Explore at:
    Dataset updated
    Jan 7, 2020
    Dataset authored and provided by
    City of Tempe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Kid Zone Enrichment Program provides a safe and enriching place for students to be in out-of-school time. This dataset provides the percentage of students who are currently enrolled in after school community programs. Data are broken down by school, including school and Kid Zone enrollment.This page provides data for the Kid Zone Participation performance measure. These data are the source of the summary values for Performance Measure 1.18The performance measure dashboard is available at 1.18 Kid Zone ParticipationAdditional InformationSource: SQL ServerContact: Jeremy KingContact E-Mail: jeremy_king@tempe.govData Source Type: SQL ServerPreparation Method: Extracted to Excel and combined with data given by the Tempe and Kyrene School districts (school enrollment, Free and Reduced Lunch Percentages). These data are generated from from SQL counts the participants by site with an enrollment end date greater or equal to the report date.Publish Frequency: AnnuallyPublish Method: ManualData Dictionary

  20. School Proficiency Index

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Jul 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). School Proficiency Index [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/school-proficiency-index
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    SCHOOL PROFICIENCY INDEXSummaryThe school proficiency index uses school-level data on the performance of 4th grade students on state exams to describe which neighborhoods have high-performing elementary schools nearby and which are near lower performing elementary schools. The school proficiency index is a function of the percent of 4th grade students proficient in reading (r) and math (m) on state test scores for up to three schools (i=1,2,3) within 1.5 miles of the block-group centroid. S denotes 4th grade school enrollment:Elementary schools are linked with block-groups based on a geographic mapping of attendance area zones from School Attendance Boundary Information System (SABINS), where available, or within-district proximity matches of up to the three-closest schools within 1.5 miles. In cases with multiple school matches, an enrollment-weighted score is calculated following the equation above. Please note that in this version of the data (AFFHT0004), there is no school proficiency data for jurisdictions in Kansas, West Virginia, and Puerto Rico because no data was reported for jurisdictions in these states in the Great Schools 2013-14 dataset. InterpretationValues are percentile ranked and range from 0 to 100. The higher the score, the higher the school system quality is in a neighborhood. Data Source: Great Schools (proficiency data, 2015-16); Common Core of Data (4th grade school addresses and enrollment, 2015-16); Maponics (attendance boundaries, 2016).Related AFFH-T Local Government, PHA and State Tables/Maps: Table 12; Map 7.

    To learn more about the School Proficiency Index visit: https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 07/2020

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2018). ACS Educational Attainment Variables - Centroids [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/82d3a33b93664638881e71d8658ff1e8
Organization logo

ACS Educational Attainment Variables - Centroids

Explore at:
Dataset updated
Oct 20, 2018
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the count of total adults (25+) and the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Search
Clear search
Close search
Google apps
Main menu