22 datasets found
  1. USA Protected from Land Cover Conversion (Mature Support)

    • ilcn-lincolninstitute.hub.arcgis.com
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected from Land Cover Conversion (Mature Support) [Dataset]. https://ilcn-lincolninstitute.hub.arcgis.com/datasets/be68f60ca82944348fb030ca7b028cba
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  2. a

    USA Protected Areas

    • cgs-topics-lincolninstitute.hub.arcgis.com
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LincolnHub (2021). USA Protected Areas [Dataset]. https://cgs-topics-lincolninstitute.hub.arcgis.com/datasets/usa-protected-areas-1
    Explore at:
    Dataset updated
    Nov 17, 2021
    Dataset authored and provided by
    LincolnHub
    Area covered
    United States,
    Description

    In the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the two highest levels of protection GAP Status 1 and 2. These two classes are commonly referred to as protected areas.Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity (GAP Status 1 and 2)Units: MetersCell Size: 30.92208102 metersSource Type: DiscretePixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean Islands.Source: USGS National Gap Analysis Program PAD-US version 2.1Publication Date: September 2020ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 2.1 created by the USGS National Gap Analysis Program. This layer displays GAP Status 1, areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management, and GAP Status 2, areas managed for biodiversity where natural disturbance is suppressed. The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  3. 13.3 Distance Analysis Using ArcGIS

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.3 Distance Analysis Using ArcGIS [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/IowaDOT::13-3-distance-analysis-using-arcgis/about
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    One important reason for performing GIS analysis is to determine proximity. Often, this type of analysis is done using vector data and possibly the Buffer or Near tools. In this course, you will learn how to calculate distance using raster datasets as inputs in order to assign cells a value based on distance to the nearest source (e.g., city, campground). You will also learn how to allocate cells to a particular source and to determine the compass direction from a cell in a raster to a source.What if you don't want to just measure the straight line from one place to another? What if you need to determine the best route to a destination, taking speed limits, slope, terrain, and road conditions into consideration? In cases like this, you could use the cost distance tools in order to assign a cost (such as time) to each raster cell based on factors like slope and speed limit. From these calculations, you could create a least-cost path from one place to another. Because these tools account for variables that could affect travel, they can help you determine that the shortest path may not always be the best path.After completing this course, you will be able to:Create straight-line distance, direction, and allocation surfaces.Determine when to use Euclidean and weighted distance tools.Perform a least-cost path analysis.

  4. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  5. u

    USA Protected Areas - GAP Status 1-4 (Mature Support)

    • colorado-river-portal.usgs.gov
    • hub.arcgis.com
    • +1more
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected Areas - GAP Status 1-4 (Mature Support) [Dataset]. https://colorado-river-portal.usgs.gov/datasets/5929d41b496f4747ba6a7f588ca618a9
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The Protected Areas Database of the United States provides a comprehensive map of lands protected by government agencies and private land owners. This database combines federal lands with information on state and local government lands and conservation easements on private lands to create a powerful resource for land-use planning.Dataset SummaryPhenomenon Mapped: Areas mapped in the Protected Areas Data base of the United States (GAP Status 1-4)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays lands mapped in Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays all four GAP Status classes: GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionThe source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  6. d

    Geodatabase of the datasets used to represent the six subunits of the Texas...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geodatabase of the datasets used to represent the six subunits of the Texas Coastal Uplands and Mississippi Embayment aquifer system, Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas [Dataset]. https://catalog.data.gov/dataset/geodatabase-of-the-datasets-used-to-represent-the-six-subunits-of-the-texas-coastal-upland
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Tennessee, Mississippi River, Missouri, Louisiana, Kentucky, Texas
    Description

    This geodatabase includes spatial datasets that represent the Texas Coastal Uplands and Mississippi Embayment aquifer system in the States of Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Included are: (1) polygon extents; datasets that represent the aquifer system extent, the entire extent subdivided into subareas or subunits, and any polygon extents of special interest (outcrop areas, no data available, areas underlying other aquifers, anomalies, for example), (2) raster datasets for the altitude of each aquifer subarea or subunit, (3) altitude, and/or if applicable, thickness contours used to generate the surface rasters, (4) georeferenced images of the figures that were digitized to create the altitude and thickness contours. The images and digitized contours are supplied for reference. The extent of the Texas Coastal Uplands and Mississippi Embayment aquifer system is derived from the linework in the aquifer system extent maps in U.S. Geological Survey Professional Paper 1416-B (USGS PP 1416-B), plates 11, 13, 15, 16, and 17, and from a digital version of the aquifer extents presented in the U.S. Geological Survey Hydrologic Atlas 730, Chapters E and F. The Texas Coastal Uplands and Mississippi Embayment aquifer system has 6 aquifer subunits, in order from the most surficial to the deepest: A1: Upper Claiborne aquifer, A2: Middle Claiborne aquifer, A3: Lower Claiborne- Upper Wilcox aquifer, A4: Middle Wilcox aquifer, A5: Lower Wilcox aquifer, A6: McNairy-Nacatoch aquifer. The altitude and thickness contours for each available subunit were digitized from georeferenced figures of altitude contours in USGS PP 1416-B, and the resultant top and bottom altitude values were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derives the altitude from the thickness (depth from the land surface), and merges the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. The raster surfaces were corrected for the areas where the altitude of an underlying layer of the aquifer exceeded altitude of an overlying layer.

  7. u

    USA Protected Areas (Mature Support)

    • colorado-river-portal.usgs.gov
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected Areas (Mature Support) [Dataset]. https://colorado-river-portal.usgs.gov/datasets/13b8c063bb0d4b30a89737605b81b9e2
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.In the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the two highest levels of protection GAP Status 1 and 2. These two classes are commonly referred to as protected areas.Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity (GAP Status 1 and 2)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 1, areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management, and GAP Status 2, areas managed for biodiversity where natural disturbance is suppressed. The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  8. n

    Sea level rise, groundwater rise, and contaminated sites in the San...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristina Hill; Daniella Hirschfeld; Caroline Lindquist; Forest Cook; Scott Warner (2023). Sea level rise, groundwater rise, and contaminated sites in the San Francisco Bay Area, and Superfund Sites in the contiguous United States [Dataset]. http://doi.org/10.6078/D15X4N
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 22, 2023
    Dataset provided by
    UNSW Sydney
    University of California, Berkeley
    Utah State University
    Authors
    Kristina Hill; Daniella Hirschfeld; Caroline Lindquist; Forest Cook; Scott Warner
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    San Francisco Bay Area, United States
    Description

    Rising sea levels (SLR) will cause coastal groundwater to rise in many coastal urban environments. Inundation of contaminated soils by groundwater rise (GWR) will alter the physical, biological, and geochemical conditions that influence the fate and transport of existing contaminants. These transformed products can be more toxic and/or more mobile under future conditions driven by SLR and GWR. We reviewed the vulnerability of contaminated sites to GWR in a US national database and in a case comparison with the San Francisco Bay region to estimate the risk of rising groundwater to human and ecosystem health. The results show that 326 sites in the US Superfund program may be vulnerable to changes in groundwater depth or flow direction as a result of SLR, representing 18.1 million hectares of contaminated land. In the San Francisco Bay Area, we found that GWR is predicted to impact twice as much coastal land area as inundation from SLR alone, and 5,297 state-managed sites of contamination may be vulnerable to inundation from GWR in a 1-meter SLR scenario. Increases of only a few centimeters of elevation can mobilize soil contaminants, alter flow directions in a heterogeneous urban environment with underground pipes and utility trenches, and result in new exposure pathways. Pumping for flood protection will elevate the salt water interface, changing groundwater salinity and mobilizing metals in soil. Socially vulnerable communities are more exposed to this risk at both the national scale and in a regional comparison with the San Francisco Bay Area. Methods Data Dryad This data set includes data from the California State Water Resources Control Board (WRCB), the California Department of Toxic Substances Control (DTSC), the USGS, the US EPA, and the US Census. National Assessment Data Processing: For this portion of the project, ArcGIS Pro and RStudio software applications were used. Data processing for superfund site contaminants in the text and supplementary materials was done in RStudio using R programming language. RStudio and R were also used to clean population data from the American Community Survey. Packages used include: Dplyr, data.table, and tidyverse to clean and organize data from the EPA and ACS. ArcGIS Pro was used to compute spatial data regarding sites in the risk zone and vulnerable populations. DEM data processed for each state removed any elevation data above 10m, keeping anything 10m and below. The Intersection tool was used to identify superfund sites within the 10m sea level rise risk zone. The Calculate Geometry tool was used to calculate the area within each coastal state that was occupied by the 10m SLR zone and used again to calculate the area of each superfund site. Summary Statistics were used to generate the total proportion of superfund site surface area / 10m SLR area for each state. To generate population estimates of socially vulnerable households in proximity to superfund sites, we followed methods similar to that of Carter and Kalman (2020). First, we generated buffers at the 1km, 3km, and 5km distance of superfund sites. Then, using Tabulate Intersection, the estimated population of each census block group within each buffer zone was calculated. Summary Statistics were used to generate total numbers for each state. Bay Area Data Processing: In this regional study, we compared the groundwater elevation projections by Befus et al (2020) to a combined dataset of contaminated sites that we built from two separate databases (Envirostor and GeoTracker) that are maintained by two independent agencies of the State of California (DTSC and WRCB). We used ArcGIS to manage both the groundwater surfaces, as raster files, from Befus et al (2020) and the State’s point datasets of street addresses for contaminated sites. We used SF BCDC (2020) as the source of social vulnerability rankings for census blocks, using block shapefiles from the US Census (ACS) dataset. In addition, we generated isolines that represent the magnitude of change in groundwater elevation in specific sea level rise scenarios. We compared these isolines of change in elevation to the USGS geological map of the San Francisco Bay region and noted that groundwater is predicted to rise farther inland where Holocene paleochannels meet artificial fill near the shoreline. We also used maps of historic baylands (altered by dikes and fill) from the San Francisco Estuary Institute (SFEI) to identify the number of contaminated sites over rising groundwater that are located on former mudflats and tidal marshes. The contaminated sites' data from the California State Water Resources Control Board (WRCB) and the Department of Toxic Substances (DTSC) was clipped to our study area of nine-bay area counties. The study area does not include the ocean shorelines or the north bay delta area because the water system dynamics differ in deltas. The data was cleaned of any duplicates within each dataset using the Find Identical and Delete Identical tools. Then duplicates between the two datasets were removed by running the intersect tool for the DTSC and WRCB point data. We chose this method over searching for duplicates by name because some sites change names when management is transferred from DTSC to WRCB. Lastly, the datasets were sorted into open and closed sites based on the DTSC and WRCB classifications which are shown in a table in the paper's supplemental material. To calculate areas of rising groundwater, we used data from the USGS paper “Projected groundwater head for coastal California using present-day and future sea-level rise scenarios” by Befus, K. M., Barnard, P., Hoover, D. J., & Erikson, L. (2020). We used the hydraulic conductivity of 1 condition (Kh1) to calculate areas of rising groundwater. We used the Raster Calculator to subtract the existing groundwater head from the groundwater head under a 1-meter of sea level rise scenario to find the areas where groundwater is rising. Using the Reclass Raster tool, we reclassified the data to give every cell with a value of 0.1016 meters (4”) or greater a value of 1. We chose 0.1016 because groundwater rise of that little can leach into pipes and infrastructure. We then used the Raster to Poly tool to generate polygons of areas of groundwater rise.

  9. Data from: Geospatial based model for malaria risk prediction in Kilombero...

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen Mwangungulu; Emmanuel Kaindoa; Dorothea Deus; Zakaria Ngereja (2023). Geospatial based model for malaria risk prediction in Kilombero Valley, south-eastern Tanzania [Dataset]. http://doi.org/10.5061/dryad.d51c5b081
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    Ifakara Health Institutehttp://www.ihi.or.tz/
    Ardhi University
    Authors
    Stephen Mwangungulu; Emmanuel Kaindoa; Dorothea Deus; Zakaria Ngereja
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Tanzania
    Description

    Background: Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania, for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts.

    Methods: This study employs a geospatial-based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability. Results: The study demonstrates that the majority of the study area falls under the moderate-risk level (61%), followed by the low-risk level (31%), while the high-malaria risk area covers a small area, which occupies only 8% of the total area. Conclusion: The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions. Methods Data acquisition and description The study employed both primary and secondary data, which were collected from numerous sources based on the input required for the implementation of the predictive model. Data collected includes the locations of all public and private health centers that were downloaded free from the health portal of the United Republic of Tanzania, Ministry of Health, Community Development, Gender, Elderly, and Children, through the universal resource locator (URL) (http://moh.go.tz/hfrportal/). Human population data was collected from the 2012 population housing census (PHC) for the United Republic of Tanzania report. Rainfall data were obtained from two local offices; Kilombero Agricultural Training and Research Institute (KATRIN) and Kilombero Valley Teak Company (KVTC). These offices collect meteorological data for agricultural purposes. Monthly data from 2012 to 2017 provided from thirteen (13) weather stations. Road and stream network shapefiles were downloaded free from the MapCruzin website via URL (https://mapcruzin.com/free-tanzania-arcgis-maps-shapefiles.htm). With respect to the size of the study area, five neighboring scenes of the Landsat 8 OLI/TIRS images (path/row: 167/65, 167/66, 167/67, 168/66 and 168/67) were downloaded freely from the United States Geological Survey (USGS) website via URL: http://earthexplorer.usgs.gov. From July to November 2017, the images were selected and downloaded from the USGS Earth Explorer archive based on the lowest amount of cloud cover coverage as viewed from the archive before downloading. Finally, the digital elevation data with a spatial resolution of three arc-seconds (90m by 90m) using WGS 84 datum and the Geographic Coordinate System were downloaded free from the Shuttle Radar Topography Mission (SRTM) via URL (https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/). Only six tiles that fall in the study area were downloaded, coded tiles as S08E035, S09E035, S10E035, S08E036, S09E036, S10E036, S08E037, S09E037 and S10E037. Preparation and Creation of Model Factor Parameters Creation of Elevation Factor All six coded tiles were imported into the GIS environment for further analysis. Data management tools, with raster/raster data set/mosaic to new raster feature, were used to join the tiles and form an elevation map layer. Using the spatial analyst tool/reclassify feature, the generated elevation map was then classified into five classes as 109–358, 359–530, 531–747, 748–1017 and >1018 m.a.s.l. and new values were assigned for each class as 1, 2, 3, 4 and 5, respectively, with regards to the relationship with mosquito distribution and malaria risk. Finally, the elevation map based on malaria risk level is levelled as very high, high, moderate, low and very low respectively. Creation of Slope Factor A slope map was created from the generated elevation map layer, using a spatial analysis tool/surface/slope feature. Also, the slope raster layer was further reclassified into five subgroups based on predefined slope classes using standard classification schemes, namely quantiles as 0–0.58, 0.59–2.90, 2.91–6.40, 6.41–14.54 and >14.54. This classification scheme divides the range of attribute values into equal-sized sub-ranges, which allow specifying the number of the intervals while the system determines where the breaks should be. The reclassified slope raster layer subgroups were ranked 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence in the locality. To elaborate, the steeper slope values are related to lesser malaria hazards, and the gentler slopes are highly susceptible to malaria incidences. Finally, the slope map based on malaria risk level is leveled as very high, high, moderate, low and very low respectively. Creation of Curvature Factor Curvature is another topographical factor that was created from the generated elevation map using the spatial analysis tool/surface/curvature feature. The curvature raster layer was further reclassified into five subgroups based on predefined curvature class. The reclassified curvature raster layer subgroups were ranked to 1, 2, 3, 4 and 5 according to their degree of suitability for malaria occurrence. To explain, this affects the acceleration and deceleration of flow across the surface. A negative value indicates that the surface is upwardly convex, and flow will be decelerated, which is related to being highly susceptible to malaria incidences. A positive profile indicates that the surface is upwardly concave and the flow will be accelerated which is related to a lesser malaria hazard, while a value of zero indicates that the surface is linear and related to a moderate malaria hazard. Lastly, the curvature map based on malaria risk level is leveled as very high, high, moderate, low, and very low respectively.
    Creation of Aspect Factor As a topographic factor associated with mosquito larval habitat formation, aspect determines the amount of sunlight an area receives. The more sunlight received the stronger the influence on temperature, which may affect mosquito larval survival. The aspect of the study area also was generated from the elevation map using spatial analyst tools/ raster /surface /aspect feature. The aspect raster layer was further reclassified into five subgroups based on predefined aspect class. The reclassified aspect raster layer subgroups were ranked as 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence, and new values were re-assigned in order of malaria hazard rating. Finally, the aspect map based on malaria risk level is leveled as very high, high, moderate, low, and very low, respectively. Creation of Human Population Distribution Factor Human population data was used to generate a population distribution map related to malaria occurrence. Kilombero Valley has a total of 42 wards, the data was organized in Ms excel 2016 and imported into the GIS environment for the analysis, Inverse Distance Weighted (IDW) interpolation in the spatial analyst tool was applied to interpolate the population distribution map. The population distribution map was further reclassified into five subgroups based on potential to malaria risk. The reclassified map layer subgroups were ranked according to the vulnerability to malaria incidence in the locality such as areas having high population having the highest vulnerability and the less population having less vulnerable, and the new value was assigned as 1, 2, 3, 4 and 5, and then leveled as very high, high, moderate, low and very low malaria risk level, respectively. Creation of Proximity to Health Facilities Factor The distribution of health facilities has a significant impact on the malaria vulnerability of the population dwellings in the Kilombero Valley. The health facility layer was created by computing distance analysis using proximity multiple ring buffer features in spatial analyst tool/multiple ring buffer. Then the map layer was reclassified into five sub-layers such as within (0–5) km, (5.1–10) km, (10.1–20) km, (20.1–50) km and >50km. According to a WHO report, it is indicated that the human population who live nearby or easily accessible to health facilities is less vulnerable to malaria incidence than the ones who are very far from the health facilities due to the distance limitation for the health services. Later on, the new values were assigned as 1, 2, 3, 4 and 5, and then reclassified as very high, high, moderate, low and very low malaria risk levels, respectively. Creation of Proximity to Road Network Factor The distance to the road network is also a significant factor, as it can be used as an estimation of the access to present healthcare facilities in the area. Buffer zones were calculated on the path of the road to determine the effect of the road on malaria prevalence. The road shapefile of the study area was inputted into GIS environment and spatial analyst tools / multiple ring buffer feature were used to generate five buffer zones with the

  10. a

    Heat Severity - USA 2022

    • community-climatesolutions.hub.arcgis.com
    • hrtc-oc-cerf.hub.arcgis.com
    • +3more
    Updated Mar 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://community-climatesolutions.hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  11. d

    Geodatabase of the available top and bottom surface datasets that represent...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geodatabase of the available top and bottom surface datasets that represent the Edwards-Trinity aquifer system, Arkansas, Oklahoma, and Texas [Dataset]. https://catalog.data.gov/dataset/geodatabase-of-the-available-top-and-bottom-surface-datasets-that-represent-the-edwards-tr
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Texas
    Description

    This geodatabase contains the spatial datasets that represent the Edwards-Trinity aquifer system in the States of Arkansas, Oklahoma, and Texas. Included are: (1) polygon extents; datasets that represent the aquifer system extent, the entire extent subdivided into subareas or subunits, and any polygon extents of special interest (no data available, areas underlying other aquifers, anomalies, for example), (2) raster datasets for the altitude of each aquifer subarea or subunit, (3) altitude, and/or if applicable, thickness contours used to generate the surface rasters, (4) georeferenced images of the figures that were digitized to create the altitude or thickness contours. The images and digitized contours are supplied for reference. The extent of the Edwards-Trinity aquifer system encompasses all subunits. It is delineated from the linework of the Edwards-Trinity aquifer system extent and outcrop maps of the U.S. Geological Survey Hydrologic Atlas 730-E (USGS HA 730-E) , available at http://water.usgs.gov/ogw/NatlAqCode-reflist.html. Included are the "no data available" extent polygons where there were no altitude data available for the bottom surface of the Edwards-Trinity aquifer system. These were digitized from USGS HA-730-E, figure 81, and U.S. Geological Survey Water-Resources Investigations Report 85-4116 (USGS WRIR 85-4116), plate 9, and U.S. Geological Survey Water-Resources Investigations Paper 91-4071 (USGS WRIR 91-4071), plate 1. The Edwards-Trinity aquifer system has three aquifer subunits, but for the purposes of this geodatabase only the ultimate top and bottom surface rasters are published. The altitudes for the top surface raster are from georeferenced images of altitude contours from USGS HA-730-E, figures 84, 98 and 114, and USGS WRIR 85-4116, plate 8. In the areas where the Edwards-Trinity top surface underlies the Pecos River alluvial aquifer (USGS HA 730-E, Pecos River Basin alluvial aquifer), and the High Plains aquifer (see USGS HA 730-E, High Plains aquifer), the altitude of the bottom those two aquifers is the top of the Edwards-Trinity aquifer system. The altitudes of the bottom surface raster are from georeferenced images of altitude contours from USGS HA-730-E figure 81, USGS WRIR 85-4116 plate 9, and USGS WRIR 91-4071 plate 1. The altitude contours were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derives the altitude from the thickness (depth from the land surface) if necessary, and merges the subareas into a single surface. The primary tool was "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. ArcGIS Desktop: Release 10.2 Redlands, CA: Environmental Systems Research Institute.

  12. a

    Santa Clara County Hillshade

    • hub.arcgis.com
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Midpeninsula Regional Open Space District (2021). Santa Clara County Hillshade [Dataset]. https://hub.arcgis.com/maps/142787e645be44cba7650e3308f537ba
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset authored and provided by
    Midpeninsula Regional Open Space District
    Area covered
    Santa Clara County
    Description

    Methods:This lidar derivative provides information about the bare surface of the earth. The 2-foot resolution hillshade raster was produced from the 2020 Digital Terrain Model using the hillshade geoprocessing tool in ArcGIS Pro.QL1 airborne lidar point cloud collected countywide (Sanborn)Point cloud classification to assign ground points (Sanborn)Ground points were used to create over 8,000 1-foot resolution hydro-flattened Raster DSM tiles. Using automated scripting routines within LP360, a GeoTIFF file was created for each tile. Each 2,500 x 2,500 foot tile was reviewed using Global Mapper to check for any surface anomalies or incorrect elevations found within the surface. (Sanborn)1-foot hydroflattened DTM tiles mosaicked together into a 1-foot resolution mosaiced hydroflattened DTM geotiff (Tukman Geospatial)1-foot hydroflattened DTM (geotiff) resampled to 2-foot hydro-flattened DTM using Bilinear interpolation and clipped to county boundary with 250-meter buffer (Tukman Geospatial)2-foot hillshade derived from DTM using the ESRI Spatial Analyst ‘hillshade’ function The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, Feet and vertical datum of NAVD88 (GEOID18), Feet. Lidar was collected in early 2020, while no snow was on the ground and rivers were at or below normal levels. To postprocess the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Sanborn Map Company, Inc., utilized a total of 25 ground control points that were used to calibrate the lidar to known ground locations established throughout the project area. An additional 125 independent accuracy checkpoints, 70 in Bare Earth and Urban landcovers (70 NVA points), 55 in Tall Grass and Brushland/Low Trees categories (55 VVA points), were used to assess the vertical accuracy of the data. These check points were not used to calibrate or post process the data.Uses and Limitations: The hillshade provides a raster depiction of the ground returns for each 2x2 foot raster cell across Santa Clara County. The layer is useful for hydrologic and terrain-focused analysis and is a helpful basemap when analyzing spatial data in relief.Related Datasets: This dataset is part of a suite of lidar of derivatives for Santa Clara County. See table 1 for a list of all the derivatives. Table 1. lidar derivatives for Santa Clara CountyDatasetDescriptionLink to DataLink to DatasheetCanopy Height ModelPixel values represent the aboveground height of vegetation and trees.https://vegmap.press/clara_chmhttps://vegmap.press/clara_chm_datasheetCanopy Height Model – Veg Returns OnlySame as canopy height model, but does not include lidar returns labelled as ‘unclassified’ (uses only returns classified as vegetation)https://vegmap.press/clara_chm_veg_returnshttps://vegmap.press/clara_chm_veg_returns_datasheetCanopy CoverPixel values represent the presence or absence of tree canopy or vegetation greater than or equal to 15 feet tall.https://vegmap.press/clara_coverhttps://vegmap.press/clara_cover_datasheetCanopy Cover – Veg Returns OnlySame as canopy height model, but does not include lidar returns labelled as ‘unclassified’ (uses only returns classified as vegetation)https://vegmap.press/clara_cover_veg_returnshttps://vegmap.press/clara_cover_veg_returns_datasheet HillshadeThis depicts shaded relief based on the Hillshade. Hillshades are useful for visual reference when mapping features such as roads and drainages and for visualizing physical geography. https://vegmap.press/clara_hillshadehttps://vegmap.press/clara_hillshade_datasheetDigital Terrain ModelPixel values represent the elevation above sea level of the bare earth, with all above-ground features, such as trees and buildings, removed. The vertical datum is NAVD88 (GEOID18).https://vegmap.press/clara_dtmhttps://vegmap.press/clara_dtm_datasheetDigital Surface ModelPixel values represent the elevation above sea level of the highest surface, whether that surface for a given pixel is the bare earth, the top of vegetation, or the top of a building.https://vegmap.press/clara_dsmhttps://vegmap.press/clara_dsm_datasheet

  13. d

    Geodatabase of the datasets that represent the three subareas of the...

    • datadiscoverystudio.org
    • data.usgs.gov
    • +4more
    zip
    Updated Jun 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Geodatabase of the datasets that represent the three subareas of the Silurian-Devonian aquifer, Illinois, Indiana, Iowa, Kentucky, Michigan, Missouri, Ohio, Tennessee, and Wisconsin. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/db64c748f93b4fc8b4ff89b8676e9ec8/html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 8, 2018
    Area covered
    Kentucky
    Description

    description: This geodatabase includes spatial datasets that represent the Silurian-Devonian aquifers in the States of Illinois, Indiana, Iowa, Kentucky, Michigan, Missouri, Ohio, Tennessee, and Wisconsin. Included are: (1) polygon extents; datasets that represent the aquifer system extent, and the entire extent subdivided into subareas, (2) raster datasets for the altitude of the top and bottom surfaces of the entire aquifer (where data are available), and (3) altitude contours used to generate the surface rasters. The digitized contours are supplied for reference. The extent of the Silurian-Devonian aquifers is from the linework of the Silurian-Devonian aquifer extent maps in U.S. Geological Survey U.S. Geological Survey Hydrologic Atlas 730, Chapters J and K, (USGS HA 730-J, -K) and a digital version of the aquifer extent presented in the National Aquifer Code Reference List, available at http://water.usgs.gov/ogw/NatlAqCode-reflist.html , "silurian.zip". The extent was then modified for each subarea: Subarea 1 (sa1): Primarily in Ohio and Indiana, subject of U.S. Geological Survey Professional Paper 1423 B (USGS PP 1423B). Subarea 2 (sa2): In Iowa. Digital data were available from the Iowa Geologic Survey. Subarea 3 (sa3): Remaining area in Illinois, Wisconsin, Michigan, and Kentucky. Extent is that part of the National Aquifer Code Reference List polygon that remained when the areas of sa1 and sa2 were removed. The altitude and thickness contours that were available for each subarea were compiled or generated from georeferenced figures of altitude contours in USGS PP 1423B for sa1, digital data from IAGS for sa2. There were no vertical data for sa3. The resultant top and bottom altitude values were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derive the altitude from the thickness (depth from the land surface), and merge the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. The raster surfaces were corrected in the areas where the altitude of an underlying layer of the aquifer exceeded the altitude of an overlying layer.; abstract: This geodatabase includes spatial datasets that represent the Silurian-Devonian aquifers in the States of Illinois, Indiana, Iowa, Kentucky, Michigan, Missouri, Ohio, Tennessee, and Wisconsin. Included are: (1) polygon extents; datasets that represent the aquifer system extent, and the entire extent subdivided into subareas, (2) raster datasets for the altitude of the top and bottom surfaces of the entire aquifer (where data are available), and (3) altitude contours used to generate the surface rasters. The digitized contours are supplied for reference. The extent of the Silurian-Devonian aquifers is from the linework of the Silurian-Devonian aquifer extent maps in U.S. Geological Survey U.S. Geological Survey Hydrologic Atlas 730, Chapters J and K, (USGS HA 730-J, -K) and a digital version of the aquifer extent presented in the National Aquifer Code Reference List, available at http://water.usgs.gov/ogw/NatlAqCode-reflist.html , "silurian.zip". The extent was then modified for each subarea: Subarea 1 (sa1): Primarily in Ohio and Indiana, subject of U.S. Geological Survey Professional Paper 1423 B (USGS PP 1423B). Subarea 2 (sa2): In Iowa. Digital data were available from the Iowa Geologic Survey. Subarea 3 (sa3): Remaining area in Illinois, Wisconsin, Michigan, and Kentucky. Extent is that part of the National Aquifer Code Reference List polygon that remained when the areas of sa1 and sa2 were removed. The altitude and thickness contours that were available for each subarea were compiled or generated from georeferenced figures of altitude contours in USGS PP 1423B for sa1, digital data from IAGS for sa2. There were no vertical data for sa3. The resultant top and bottom altitude values were interpolated into surface rasters within a GIS using tools that create hydrologically correct surfaces from contour data, derive the altitude from the thickness (depth from the land surface), and merge the subareas into a single surface. The primary tool was an enhanced version of "Topo to Raster" used in ArcGIS, ArcMap, Esri 2014. The raster surfaces were corrected in the areas where the altitude of an underlying layer of the aquifer exceeded the altitude of an overlying layer.

  14. a

    Full Range Heat Anomalies - USA 2023

    • hub.arcgis.com
    • keep-cool-global-community.hub.arcgis.com
    • +1more
    Updated Apr 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Full Range Heat Anomalies - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/e89a556263e04cb9b0b4638253ca8d10
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  15. USA Protected Areas - GAP Status 4 (Mature Support)

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    Updated Jan 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected Areas - GAP Status 4 (Mature Support) [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/items/924127e2f49f4830b7a81a0bd737e5d2
    Explore at:
    Dataset updated
    Jan 31, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays lands in the Protected Areas Database of the United States that have no known mandate for protection.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the lowest level of protection known as GAP Status 4. Because designations may overlap, areas may have a higher level of protection than indicated in this layer. See the USA Protected Areas or the USA Protected Areas - GAP 1-4 layers for the highest level of protection for a specific area.Dataset SummaryPhenomenon Mapped: Areas with no known mandate for protection (GAP Status 4)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 4 - areas with no known mandate for protection.The source data for this layer are available here. A feature layer published from this dataset is also available. The data were mapped from the original Albers projection to the WGS 1984 Geographic Coordinate System using the Project Tool. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "GAP Status 4" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "GAP Status 4" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  16. a

    Full Range Heat Anomalies - USA 2022

    • giscommons-countyplanning.opendata.arcgis.com
    • keep-cool-global-community.hub.arcgis.com
    • +2more
    Updated Mar 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Full Range Heat Anomalies - USA 2022 [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/TPL::full-range-heat-anomalies-usa-2022
    Explore at:
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  17. USA Wetlands

    • hub.arcgis.com
    • cgs-topics-lincolninstitute.hub.arcgis.com
    Updated Dec 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Wetlands [Dataset]. https://hub.arcgis.com/datasets/f3fe92adaa4e4acda0f31e3582d4c55d
    Explore at:
    Dataset updated
    Dec 13, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Wetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsUnits: MetersCell Size: 10 metersSource Type: ThematicPixel Type: Unsigned integer 16 bitData Coordinate System: North America Albers Equal Area Conic (WKID 102008)Mosaic Projection: North America Albers Equal Area Conic (WKID 102008)Extent: 50 United States plus Puerto Rico, American Samoa, the US Virgin Islands, the Northern Mariana Islands, and US Minor Outlying IslandsSource: U.S. Fish and Wildlife ServicePublication Date: October 26, 2024 ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the October 26, 2024 version of the NWI. The original NWI features were downloaded from USFWS and then converted to a single part feature class using the Multipart To Singlepart tool. After that, the Dice tool was used to break up features larger than 50,000 vertices. The diced, singlepart features were projected to North America Albers projection, then the Repair Geometry tool was run on the features, using tool defaults, to prepare it for a clean rasterization. The features were then converted to several rasters in North America Albers projection using the Polygon to Raster Tool. The National Land Cover Dataset was used as a snap raster for the rasterization process. The rasters representing different parts of the USA are served together as a single layer from a mosaic dataset on the server.This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data. NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.The layer serves an index value from a mosaic dataset on the enterprise server. It uses an attribute table function on the mosaic to serve the attributes that appear in the popup for the layer. Because there are more than 2,000 integer values served by the layer, most map clients can not render a legend for this layer. A colormap is used after the attribute table function on the mosaic dataset to help the layer render in the colors intended for the layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "USA Wetlands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "USA Wetlands" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  18. Urban Park Size (Southeast Blueprint Indicator)

    • secas-fws.hub.arcgis.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). Urban Park Size (Southeast Blueprint Indicator) [Dataset]. https://secas-fws.hub.arcgis.com/maps/d47cdf19c30b443096f5d94cf87b52d7
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for SelectionProtected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code.Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly

  19. a

    Mount Saint Helens in 3D: Before and After

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    Updated Aug 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2019). Mount Saint Helens in 3D: Before and After [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/b2f2143b43514e618c431e8bd9300840
    Explore at:
    Dataset updated
    Aug 7, 2019
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This 3D model of Mount Saint Helens shows the topography using wood-textured contours set at 50m vertical spacing, with the darker wood grain color indicating the major contours at 1000, 1500, 2000, and 2500 meters above sea level. The state of the mountain before the eruption of May 13, 1980 is shown with thinner contours, allowing you to see the volume of rock that was ejected via the lateral blast.The process to create the contours uses CityEngine and ArcGIS Pro for data processing, symbolization, and publishing. The steps:Create a rectangular AOI polygon and use the Clip Raster tool on your local terrain raster. A 30m DEM was used for before, 10m for after.Run the Contour tool on the clipped raster, using the polygon output option - 50m was used for this scene.Run the Smooth Polygon tool on the contours. For Mount St. Helens, I used the PAEK algorithm, with a 200m smoothing tolerance. Depending on the resolution of the elevation raster and the extent of the AOI, a larger or smaller value may be needed. Write a CityEngine rule (see below) that extrudes and textures each contour polygon to create a stair-stepped 3D contour map. Provide multiple wood texture options with parameters for: grain size, grain rotation, extrusion height (to account for different contour depths if values other than 100m are used), and a hook for the rule to read the ContourMax attribute that is created by the Contour tool. Export CityEngine rule as a Rule Package (*.rpk).Add some extra features for context - a wooden planter box to hide some of the edges of the model, and water bodies.Apply the CityEngine-authored RPK to the contour polygons in ArcGIS Pro as a procedural fill symbol, adjust parameters for desired look & feel.Run Layer 3D to Feature Class tool to convert the procedural fill to multipatch features. Share Web SceneRather than create a more complicated CityEngine rule that applied textures for light/dark wood colors for minor/major contours, I just created a complete light- and dark-wood version of the mountain (and one with just the water), then shuffled them together.Depending on where this methodology is applied, you may want to clip out other areas - for example, glaciers, roads, or rivers. Or add annotation by inlaying a small north arrow in the corner of the map. I like the challenge of representing any feature in this scene in terms of wood colors and grains - some extruded, some recessed, some inlaid flat.

  20. a

    Caribbean Low-Urban Historic Landscapes (Southeast Blueprint Indicator)

    • hub.arcgis.com
    • secas-fws.hub.arcgis.com
    Updated Sep 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2023). Caribbean Low-Urban Historic Landscapes (Southeast Blueprint Indicator) [Dataset]. https://hub.arcgis.com/maps/bb6f52c0a3f34311a0eb2b2bbcd211d3
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for Selection Low-urban historic landscapes indicate significant cultural landscapes whose cultural context has been less impacted by urban development. Cultural landscapes are “properties [that] represent the combined works of nature and of man” (UNESCO 2012). Loss of natural habitat within these cultural landscapes reduces their overall historic and cultural value. Input Data

    Southeast Blueprint 2023 subregions: Caribbean
    Southeast Blueprint 2023 extent
    2020 LANDFIRE Existing Vegetation Type (EVT) (v2.2.0) for Puerto Rico and the U.S. Virgin Islands; access the data for U.S. Insular Areas
    The following The National Register of Historic Places data for Puerto Rico provided by Eduardo Cancio, Information Systems Specialist with the Puerto Rico State Historic Preservation Office (SHPO) on 2-21-2023 (contact ecancio@prshpo.pr.gov for more information):NRHP_PR_individual_properties.shp
        NRHP_PR_lineal_districts.shp
        NRHP_PR_polygonal_districts.shp 
    

    The National Register of Historic Places reflects what Americans value in their historic built environment. It is the collection of our human imprint on the landscape that records through time our changing relationship with the landscape, bridging between modern life and our history by providing, as closely as possible, experiences that evoke our empathy and understanding of previous eras.

      OpenStreetMap data “multipolygons” layer, accessed 3-14-2023 
    

    A polygon from this dataset is considered a historic site if the “historic” tag is not null. In OpenStreetMap, a historic feature refers to “features that still exist or of which traces are observable, and that are of historic interest, or where the feature class is generally of historical interest”. We only used historic polygons if the name tag is also not null. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page.

      Select USVI historic districts: Polygon boundaries for the Christiansted National Historic District on St. Thomas and Charlotte Amalie Historic and Architectural Historic District on St. Croix, provided by Nikita Beck with the University of the Virgin Islands on 3-6-2023 (contact nikita.beck@uvi.edu for more information)
    

    Mapping Steps

    Identify urban areas using the following classes from 2020 LANDFIRE EVT: Developed-High Intensity, Developed-Low Intensity, Developed-Medium Intensity, Developed-Open Space, Developed-Roads. Classify all urban pixels as 1 and all other pixels as 0.
    Calculate the percent urban in a 270 m radius circle for each pixel using the Focal Statistics tool in ArcGIS. Since the LANDFIRE data resolution is 30 m, 270 m (9 pixels) approximates a 250 m radius. Retain all pixels that are <50% urban within a 270 m radius. 
    Create a historic places layer by combining the following vector datasets as follows:Buffer National Register point data from the Puerto Rico SHPO by 100 m.
        Combine National Register polygons from the Puerto Rico SHPO, select USVI historic districts, and OpenStreetMap polygons. Only use OpenStreetMap polygons if both the historic and name columns are null. Buffer the polygons by 30 m.
        Buffer line data from the Puerto Rico SHPO by 30 m.
        Merge all buffered point, polygon, and line data into one layer and convert to a 30 m raster representing historic places.
    
    Use the historic places raster to remove areas that fall outside of the historic places.
    Reclassify the above raster into 3 classes, seen in the final indicator values below.
    Clip to the Caribbean Blueprint 2023 subregion.
    As a final step, clip to the spatial extent of Southeast Blueprint 2023. 
    

    Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 2 = Historic place with nearby low-urban buffer 1 = Historic place with nearby high-urban buffer 0 = Not identified as a historic place Known Issues

    There are likely spatial mapping errors for some of the historic areas. 
    Some historic areas with cultural importance are not captured in the National Register of Historic Places.
    The approach to measuring urban development doesn’t capture degradation to historic places that were historically in larger cities (e.g., courthouses and other downtown buildings). It also doesn’t distinguish between historic places that have always been urban and historic places that used to be low-urban.
    This layer likely underrepresents some historic areas in the U.S. Virgin Islands compared to Puerto Rico because we were unable to incorporate historic places data from the USVI SHPO during the timeline of this Blueprint update. As a result, some sites on the National Register of Historic Places are not depicted in this indicator.
    OpenStreetMap is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a historic site) or incorrect tags (e.g., labelling an area as a historic site that does not have historic value). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new historic sites to improve the accuracy and coverage of this indicator in the future.
    Because open water is considered a non-urban landcover for the purposes of this analysis, this indicator is likely overprioritizing some urbanized historic areas that are close to water, such as marinas and bridges.
    

    Disclaimer: Comparing with Older Indicator Versions There are numerous problems with using Southeast Blueprint indicators for change analysis. Please consult Blueprint staff if you would like to do this (email hilary_morris@fws.gov). Literature Cited OpenStreetMap. Historic. Data extracted through Geofabrik downloads. Accessed March 14, 2023. [https://wiki.openstreetmap.org/wiki/Key:historic].

    LANDFIRE, Earth Resources Observation and Science Center (EROS), U.S. Geological Survey. Published August 1, 2022. LANDFIRE 2020 Existing Vegetation Type (EVT) Puerto Rico US Virgin Islands. LF 2020, raster digital data. Sioux Falls, SD. [https://www.landfire.gov].UNESCO (2012) Operational Guidelines for the Implementation of the World Heritage Convention [1]. UNESCO World Heritage Centre. Paris. Page 14. [https://whc.unesco.org/archive/opguide12-en.pdf].

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2017). USA Protected from Land Cover Conversion (Mature Support) [Dataset]. https://ilcn-lincolninstitute.hub.arcgis.com/datasets/be68f60ca82944348fb030ca7b028cba
Organization logo

USA Protected from Land Cover Conversion (Mature Support)

Explore at:
Dataset updated
Feb 1, 2017
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

Search
Clear search
Close search
Google apps
Main menu