32 datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. 07.0 Data QC with ArcGIS: Visual Review

    • training-iowadot.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 07.0 Data QC with ArcGIS: Visual Review [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/c9450ca88b084800bdc6f82bc69ec27f
    Explore at:
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How do you ensure your data is free of errors? While you may already leverage ArcGIS Data Reviewer for its automated validation capabilities, you might ocassionally encounter problems with certain challenging subsets of features. For example, think about a situation in which you expected an automated data check to return a certain error but it did not. You tried configuring the check over and over again, but did not figure out a method of automatically detecting the error.Visual review can help. Manually reviewing your data provides a way to find errors that are difficult to detect using automated methods, such as features that are missing, misplaced, miscoded, or redundant.The following graphic shows the topics that will be covered throughout the course. You will learn the associated workflows that take advantage of ArcGIS Data Reviewer functionality.After completing this course, you will be able to:Determine situations in which visual review is appropriate.Analyze a statistically significant sample.Create a QC grid and perform a systematic visual review.Indicate missing, misplaced, miscoded, or redundant features.Recognize how to find changes between versions.

  3. a

    04.5 Using ArcGIS for Land Records Management

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 04.5 Using ArcGIS for Land Records Management [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/b432b3b66e954db9bc4c855f0f678d2b
    Explore at:
    Dataset updated
    Feb 18, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar discusses the five common business patterns of GIS implementation (asset management, planning and analyis, field mobility, operational awareness, and citizen engagement), and how to address these patterns with the ArcGIS system and free applications on the Resource Center.

  4. Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and...

    • osti.gov
    • dataone.org
    • +1more
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States) (2024). Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2406464
    Explore at:
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States)
    DOE:DE-SC0023216
    Southeast Texas Urban Integrated Field Laboratory (SETx UIFL) – Equitable solutions for communities caught between floods and air pollution
    Area covered
    Port Arthur
    Description

    Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.

  5. a

    OpenStreetMap

    • ethiopia.africageoportal.com
    • noveladata.com
    • +40more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://ethiopia.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  6. w

    Wisconsin FoodShare Employment and Training (FSET) Regions

    • data.dhsgis.wi.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated May 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wisconsin Department of Health Services (2019). Wisconsin FoodShare Employment and Training (FSET) Regions [Dataset]. https://data.dhsgis.wi.gov/maps/wisconsin-foodshare-employment-and-training-fset-regions
    Explore at:
    Dataset updated
    May 22, 2019
    Dataset authored and provided by
    Wisconsin Department of Health Services
    License

    https://data.dhsgis.wi.gov/pages/gis-data-disclaimerhttps://data.dhsgis.wi.gov/pages/gis-data-disclaimer

    Area covered
    Description

    This dataset contains boundaries for the FoodShare Employment and Training regions. The FoodShare Employment and Training (FSET) program is a free program that helps FoodShare members build their job skills and find jobs. There are eleven FSET regions. Each FSET region coordinates FSET services for the residents of counties located in that region.For more information please visit the Wisconsin Department of Health Services website: https://www.dhs.wisconsin.gov/fset/fset-regions.htm

  7. Land cover of United Republic of Tanzania - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of United Republic of Tanzania - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/adb0b581-b530-4a06-8a86-ed562ddc63b6
    Explore at:
    png, html, wms, zip, httpAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Tanzania
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of United Republic of Tanzania - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  8. World Traffic Service

    • newgis.brla.gov
    • disasterpartners.org
    • +20more
    Updated Dec 13, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2012). World Traffic Service [Dataset]. https://newgis.brla.gov/maps/ff11eb5b930b4fabba15c47feb130de4
    Explore at:
    Dataset updated
    Dec 13, 2012
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows: Green (fast): 85 - 100% of free flow speeds Yellow (moderate): 65 - 85% Orange (slow); 45 - 65% Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  9. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  10. a

    04.5 Using ArcGIS for Land Records Management

    • hub.arcgis.com
    Updated Feb 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 04.5 Using ArcGIS for Land Records Management [Dataset]. https://hub.arcgis.com/documents/IowaDOT::04-5-using-arcgis-for-land-records-management/about
    Explore at:
    Dataset updated
    Feb 17, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar discusses the five common business patterns of GIS implementation (asset management, planning and analyis, field mobility, operational awareness, and citizen engagement), and how to address these patterns with the ArcGIS system and free applications on the Resource Center.

  11. Land cover of Bolivia - Globcover (22 classes)

    • data.amerigeoss.org
    html, http, png, zip
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Bolivia - Globcover (22 classes) [Dataset]. https://data.amerigeoss.org/dataset/e3cd1134-b99f-4436-aa59-c540d7237bcf
    Explore at:
    http, png, html, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Bolivia
    Description

    This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download Land cover of Bolivia - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  12. Land cover of Cameroon - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Cameroon - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/235d6f0d-b6c7-41d3-a09b-a741dee3f555
    Explore at:
    html, http, wms, png, zipAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Cameroon
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Cameroon - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  13. Land cover of Papua New Guinea - Globcover (22 classes)

    • data.amerigeoss.org
    html, http, png, zip
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Papua New Guinea - Globcover (22 classes) [Dataset]. https://data.amerigeoss.org/ar/dataset/271096b2-8a12-4050-9ff2-27c0fec16c8f
    Explore at:
    png, zip, html, httpAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Papua New Guinea
    Description

    This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download Land cover of Papua New Guinea - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  14. g

    PDESI Practice Sites 76 June2023 | gimi9.com

    • gimi9.com
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). PDESI Practice Sites 76 June2023 | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_https-www-arcgis-com-home-item-html-id-8cf0c2b124fb4d419d91c2267c532f53-sublayer-0
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    Practice sites registered in the Departmental Plan of Spaces, Sites and Routes (PDESI) relating to Nature Sports (see glossary in metadata) of the Seine-Maritime in June 2023. In June 2023, 20 sites were registered in the Seine-Maritime PDESI (orientation courses, free flight, bases, etc.) Metadata Link to metadata Additional resources * Site of the National Resource Centre Sports de Nature: This website of the Ministry of Sports offers information relating to the Departmental Plans of Spaces, Sites and Routes (PDESI) and the Departmental Commissions of Spaces, Sites and Routes (CDESI). * Site seinemaritime.fr: The website of the Department of Seine-Maritime offers a page dedicated to aids for sports leisure of nature registered with the PDESI. * Suricate site: This site allows to report a problem (marking, security, conflicts of use, environment) on a space, site or route, accompanied by its geolocation and a photo. * Seine-maritime-tourism site: https://www.seine-maritime-tourisme.com/fr/je-choisis/une-activite/index.php On this site of Seine-Maritime Attractivité, you will find descriptive sheets of many sports and outdoor leisure sites, which can be consulted by type of activity, by municipality, but also by accessibility with disabilities.

  15. Land cover of Kenya - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Kenya - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/a1ce1208-a9c2-43ad-80b1-0349cb54e469
    Explore at:
    wms, http, png, zip, htmlAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Kenya
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Kenya - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  16. Training: 3. GIS Concepts, Applications, and Software

    • sudan-uneplive.hub.arcgis.com
    Updated Jun 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2020). Training: 3. GIS Concepts, Applications, and Software [Dataset]. https://sudan-uneplive.hub.arcgis.com/documents/642a61631daf44e0b91991fbd774e3e8
    Explore at:
    Dataset updated
    Jun 25, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UN Environment, Early Warning &Data Analytics
    Description

    This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.

  17. Land cover of Equatorial Guinea - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, http, png, wms +1
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Equatorial Guinea - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/dataset/bbb85e88-7441-492e-9702-e143ac2d62d3
    Explore at:
    html, zip, png, wms, httpAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Equatorial Guinea
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Equatorial Guinea - Shape file format

    GLOBCOVER on the ESA Web site

    Global Land Cover Network - GLCN

  18. Land cover of Zambia - Globcover Regional (46 classes)

    • data.amerigeoss.org
    html, png, wms, zip
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Land cover of Zambia - Globcover Regional (46 classes) [Dataset]. https://data.amerigeoss.org/ro/dataset/ddad78a7-64e5-47c5-9091-4c07480a8ff3
    Explore at:
    zip, png, html, wmsAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Zambia
    Description

    This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.

    The data set is intended for free public access.

    The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)

    You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)

    Supplemental Information:

    This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Antonio Martucci

    Data lineage:

    This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).

    Online resources:

    Download - Land cover of Zambia 46 classes - Shape file format

    GLOBCOVER on the ESA Web site

  19. a

    Goal 4: Ensure inclusive and equitable quality education and promote...

    • fijitest-sdg.hub.arcgis.com
    • haiti-sdg.hub.arcgis.com
    • +12more
    Updated Jul 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arobby1971 (2022). Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all [Dataset]. https://fijitest-sdg.hub.arcgis.com/items/cb88375ff09841d5ae0a1464b06bce97
    Explore at:
    Dataset updated
    Jul 3, 2022
    Dataset authored and provided by
    arobby1971
    Description

    Goal 4Ensure inclusive and equitable quality education and promote lifelong learning opportunities for allTarget 4.1: By 2030, ensure that all girls and boys complete free, equitable and quality primary and secondary education leading to relevant and effective learning outcomesIndicator 4.1.1: Proportion of children and young people (a) in grades 2/3; (b) at the end of primary; and (c) at the end of lower secondary achieving at least a minimum proficiency level in (i) reading and (ii) mathematics, by sexSE_TOT_PRFL: Proportion of children and young people achieving a minimum proficiency level in reading and mathematics (%)Indicator 4.1.2: Completion rate (primary education, lower secondary education, upper secondary education)SE_TOT_CPLR: Completion rate, by sex, location, wealth quintile and education level (%)Target 4.2: By 2030, ensure that all girls and boys have access to quality early childhood development, care and pre-primary education so that they are ready for primary educationIndicator 4.2.1: Proportion of children aged 24-59 months who are developmentally on track in health, learning and psychosocial well-being, by sexiSE_DEV_ONTRK: Proportion of children aged 36−59 months who are developmentally on track in at least three of the following domains: literacy-numeracy, physical development, social-emotional development, and learning (% of children aged 36-59 months)Indicator 4.2.2: Participation rate in organized learning (one year before the official primary entry age), by sexSE_PRE_PARTN: Participation rate in organized learning (one year before the official primary entry age), by sex (%)Target 4.3: By 2030, ensure equal access for all women and men to affordable and quality technical, vocational and tertiary education, including universityIndicator 4.3.1: Participation rate of youth and adults in formal and non-formal education and training in the previous 12 months, by sexSE_ADT_EDUCTRN: Participation rate in formal and non-formal education and training, by sex (%)Target 4.4: By 2030, substantially increase the number of youth and adults who have relevant skills, including technical and vocational skills, for employment, decent jobs and entrepreneurshipIndicator 4.4.1: Proportion of youth and adults with information and communications technology (ICT) skills, by type of skillSE_ADT_ACTS: Proportion of youth and adults with information and communications technology (ICT) skills, by sex and type of skill (%)Target 4.5: By 2030, eliminate gender disparities in education and ensure equal access to all levels of education and vocational training for the vulnerable, including persons with disabilities, indigenous peoples and children in vulnerable situationsIndicator 4.5.1: Parity indices (female/male, rural/urban, bottom/top wealth quintile and others such as disability status, indigenous peoples and conflict-affected, as data become available) for all education indicators on this list that can be disaggregatedSE_GPI_PTNPRE: Gender parity index for participation rate in organized learning (one year before the official primary entry age), (ratio)SE_GPI_TCAQ: Gender parity index of trained teachers, by education level (ratio)SE_GPI_PART: Gender parity index for participation rate in formal and non-formal education and training (ratio)SE_GPI_ICTS: Gender parity index for youth/adults with information and communications technology (ICT) skills, by type of skill (ratio)SE_IMP_FPOF: Immigration status parity index for achieving at least a fixed level of proficiency in functional skills, by numeracy/literacy skills (ratio)SE_NAP_ACHI: Native parity index for achievement (ratio)SE_LGP_ACHI: Language test parity index for achievement (ratio)SE_TOT_GPI: Gender parity index for achievement (ratio)SE_TOT_SESPI: Low to high socio-economic parity status index for achievement (ratio)SE_TOT_RUPI: Rural to urban parity index for achievement (ratio)SE_ALP_CPLR: Adjusted location parity index for completion rate, by sex, location, wealth quintile and education levelSE_AWP_CPRA: Adjusted wealth parity index for completion rate, by sex, location, wealth quintile and education levelSE_AGP_CPRA: Adjusted gender parity index for completion rate, by sex, location, wealth quintile and education levelTarget 4.6: By 2030, ensure that all youth and a substantial proportion of adults, both men and women, achieve literacy and numeracyIndicator 4.6.1: Proportion of population in a given age group achieving at least a fixed level of proficiency in functional (a) literacy and (b) numeracy skills, by sexSE_ADT_FUNS: Proportion of population achieving at least a fixed level of proficiency in functional skills, by sex, age and type of skill (%)Target 4.7: By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development, including, among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship and appreciation of cultural diversity and of culture’s contribution to sustainable developmentIndicator 4.7.1: Extent to which (i) global citizenship education and (ii) education for sustainable development are mainstreamed in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessmentTarget 4.a: Build and upgrade education facilities that are child, disability and gender sensitive and provide safe, non-violent, inclusive and effective learning environments for allIndicator 4.a.1: Proportion of schools offering basic services, by type of serviceSE_ACS_CMPTR: Schools with access to computers for pedagogical purposes, by education level (%)SE_ACS_H2O: Schools with access to basic drinking water, by education level (%)SE_ACS_ELECT: Schools with access to electricity, by education level (%)SE_ACC_HNDWSH: Schools with basic handwashing facilities, by education level (%)SE_ACS_INTNT: Schools with access to the internet for pedagogical purposes, by education level (%)SE_ACS_SANIT: Schools with access to access to single-sex basic sanitation, by education level (%)SE_INF_DSBL: Proportion of schools with access to adapted infrastructure and materials for students with disabilities, by education level (%)Target 4.b: By 2020, substantially expand globally the number of scholarships available to developing countries, in particular least developed countries, small island developing States and African countries, for enrolment in higher education, including vocational training and information and communications technology, technical, engineering and scientific programmes, in developed countries and other developing countriesIndicator 4.b.1: Volume of official development assistance flows for scholarships by sector and type of studyDC_TOF_SCHIPSL: Total official flows for scholarships, by recipient countries (millions of constant 2018 United States dollars)Target 4.c: By 2030, substantially increase the supply of qualified teachers, including through international cooperation for teacher training in developing countries, especially least developed countries and small island developing StatesIndicator 4.c.1: Proportion of teachers with the minimum required qualifications, by education leveliSE_TRA_GRDL: Proportion of teachers who have received at least the minimum organized teacher training (e.g. pedagogical training) pre-service or in-service required for teaching at the relevant level in a given country, by sex and education level (%)

  20. a

    Flyer Air Quality Workshop Satellite-Derived Air Quality Information for the...

    • 2024amerigeoweek-amerigeoss.hub.arcgis.com
    • 2024amerigeoweek.amerigeo.org
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2024). Flyer Air Quality Workshop Satellite-Derived Air Quality Information for the Americas [Dataset]. https://2024amerigeoweek-amerigeoss.hub.arcgis.com/datasets/flyer-air-quality-workshop-satellite-derived-air-quality-information-for-the-americas
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Americas
    Description

    OverviewThis workshop will provide an overview of satellite-derived and model-based resources available from NASA and other organizations which can support the assessment of air quality in the Americas. Participants will see study examples of resources and their application to regional air quality assessment. Participants will be introduced to some of the free online tools and resources for interacting with these datasets, followed by an opportunity to collaborate and apply these resources to their own air quality case studies, and to report back to the trainers and other participants about what they found. Workshop participants can expect to gain knowledge of earth observation datasets and resources that can be used to address air pollution challenges related to air quality management, public health, and more.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu