This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Reporter for MRGPThe Reporter for MRGP doesn't require you to download any apps to complete an inventory; all you need is an internet connection and web browser. The Reporter includes culverts and bridges from VTCULVERTS, town highways from Vtrans and the current status of the MRGP segments and outlets on the map.MRGP Fieldworker SolutionNotes on MRGP fieldworker solution: July 12, 2021. The MRGP map now displays the current status of road segments and outlets. Fieldworkers using the MRGP solution should remove the offline map area(s) from their device, and keep their new offline map current, by syncing their map. Enabling auto-sync will get you the current segment or outlet status automatically. See FAQ section below for more information. Road Erosion Inventory forms are available and have a new look and feel this year. The drainage ditch survey is broken out into three pages for a better user experience. The first page contains survey and segment information, the second; the inventory, and the third; barriers to implementation. You will notice the questions are outlined by section so it’s easier to follow along too. The questions have remained the same. Survey123 has a new option requiring users to update surveys on their mobile device. That option has been enabled for the two MRGP Survey123 forms. Step 1: Download the free mobile appsFor fieldworkers to collect and submit data to VT DEC, two free apps are required: ArcGIS Collector or Field Maps and Survey123. ArcGIS Collector or Field Maps is used first to locate the segment or outlet for inventory, and Survey123, for completing the Road Erosion Inventory. ArcGIS Field Maps is ESRI’s new all-in-one app for field work and will replace ArcGIS Collector. You can download ArcGIS Collector or ArcGIS Fields Maps and Survey123 from the Google Play Store.You can download ArcGIS Collector or ArcGIS Field Maps and Survey123 from Apple Store.
Step 2: Sign into the mobile appYou will need appropriate credentials to access fieldworker solution, please contact your Regional Planning Commission’s Transportation Planner or Jim Ryan (MRGP Program Lead) at (802) 490-6140.Open Collector for ArcGIS, select ‘ArcGIS Online’ as shown below, and enter the user name and password. The credential is saved unless you sign out. Step 3: Open the MRGP Mobile MapIf you’re working in an area that has a reliable data connection (e.g. LTE or 4G), open the map below by selecting it.Step 4: Select a road segment or outlet for inventoryUse your location, button circled in red below, select the segment or outlet you need to inventory, and select 'Update Road Segment Status' from the pop-up to launch Survey123.
Step 5: Complete the Road Erosion Inventory and submit inventory to DECSelecting 'Update Road Segment Status' opens Survey123, downloads the relevant survey and pre-populates the REI with important information for reporting to DEC. You will have to enter the same username and password to access the REI forms. The credential is saved unless you sign out of Survey123.Complete the survey using the appropriate supplement below and submit the assessment directly to VT DEC.Paved Roads with Catch Basin SupplementPaved and Gravel Roads with Drainage Ditches Supplement
Step 6: Repeat!Go back to the ArcGIS Collector or Field Maps and select the next segment for inventory and repeat steps 1-5.
If you have question related to inventory protocol reach out to Jim Ryan, MRGP Program Lead, at jim.ryan@vermont.gov, (802) 490-6140If you have questions about implementing the mobile data collection piece please contact Ryan Knox, ADS-ANR IT, at ryan.knox@vermont.gov, (802) 793-0297
The location where I'm doing inventory does not have a data coverage (LTE or 4G). What can I do?ArcGIS Collector allows you take map areas offline when you think there will be spotty or no data coverage. I made a video to demonstrate the steps for taking map areas offline - https://youtu.be/OEsJrCVT8BISurvey123 operates offline by default but you need to download the survey. My recommendation is to test the fieldworker solution (Steps 1-5) before you go into the field but don't submit the test survey.Where can I download the Road Erosion Scoring shown on the the Atlas? You can download the scoring for both outlets and road segments through the VT Open Geodata Portal.https://geodata.vermont.gov/maps/VTANR::mrgp-scoring-open-data/aboutHow do I use my own ArcGIS Collector map for launching the official MRGP REI survey form? You can use the following custom url for launching Survey123, open the REI and prepopulate answers in the form. More information is here. TIP: add what's below directly in the HTML view of the popup not the link as described in the post I provided.
Hydrologically connected
segments (lines):Update Road Segment Status
Segment ID: {SegmentID}
Segment Status: {SegmentStatus}
{RoadName}, {Municipality}
Outlets: {Outlets}
Hydrologically
connected outlets (points):Update Outlet Status
Outlet ID: {OutletID}
Municipality: {Municipality}
Erosion: {ErosionValue}
How do I save my name and organization information used in subsequent surveys? Watch this short video or execute the steps below:
Open Survey123 and open a blank REI form (Collect button) Note: it's important to open a blank form so you don't save the same segment id for all your surveys Fill-in your 'Name' and 'Organization' and clear the 'Date of Assessment field' (x button). Using the favorites menu in the top-right corner you can use the current state of your survey to 'Set as favorite answers.' Close survey and 'Save this survey in Drafts.' Use Collector to launch survey from selected feature (segment or outlet). Using the favorites menu again, 'Paste answers from favorite.
What if the map doesn't have the outlet or road segment I need to inventory for the MRGP? Go Directly to Survey123 and complete the appropriate Road Erosion Inventory and submit the data to DEC. The survey includes a Geopoint (location) that we can use to determine where you completed the inventory.
Where can I view the Road Erosion Inventories completed with Survey123? Using the MRGP credentials you have access to another map that shows completed REIs.Web map - Completed Road Erosion Inventories for MRGPWhere can I download the 2020-2021 data collected with Survey123?Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f8a11de8a5a0469596ef11429ab49465Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=ae13a925a662490184d5c5b1b9621672Where can I download the 2019 data collected with Survey123?
Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f60050c6f3c04c60b053470483acb5b1 Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=753006f9ecf144ccac8ce37772bb2c03 Where can I download the 2018 data collected with Survey123?Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=124b617d142e4a1dbcfb78a00e8b9bc5Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=8abcc0fcec0441ce8ae6cd38e3812b1b Where can I download the Hydrologically Connected Road Segments and Outlets?Vermont Open Data Geoportal - https://geodata.vermont.gov/datasets/VTANR::hydrologically-connected-road-segments-1/about
This 2019 version of the MRGP Outlets is based on professional mapping completed using DEC's Stormwater Infrastructure dataset. In catch basin systems, work was completed to match outlets to road segments that drain to them. The outlets here correspond to Outlet IDs identified in the Hydrologically connected roads segments layer. For outlets that meet standard, road segments will also meet the standard for MRGP compliance.
The Digital Geologic-GIS Map of Niobrara National Scenic River and Vicinity, Nebraska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (niob_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (niob_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (niob_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (niob_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (niob_geology_metadata_faq.pdf). Please read the niob_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (niob_geology_metadata.txt or niob_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Geospatial Analytics Market size was valued at USD 79.06 USD billion in 2023 and is projected to reach USD 202.74 USD billion by 2032, exhibiting a CAGR of 14.4 % during the forecast period. The growing adoption of location-based technologies and the increasing need for data-driven decision-making in various industries are key factors driving market growth. Geospatial analytics captures, produces and displays GIS (geographic information system)-maps and pictures that may be weather maps, GPS or satellite photos. The geospatial analysis as a tool works with state of art technology in every formats namely; the GPS, sensors that locates, social media, mobile devices, multi of the satellite imagery to produce data visualizations that are facilitating trend-finding in complex relations between people and places as well are the situations' understanding. Visualizations are depicted through the use of maps, graphs, figures, and cartograms that illustrate the entire historical picture as well as a current changing trend. This is why the forecast becomes more confident and the situation is anticipated better. Recent developments include: February 2024: Placer.ai and Esri, a Geographic Information System (GIS) technology provider, partnered to empower customers with enhanced analytics capabilities, integrating consumer behavior analysis. Additionally, the agreement will foster collaborations to unlock further features by synergizing our respective product offerings., December 2023: CKS and Esri India Technologies Pvt Ltd teamed up to introduce the 'MMGEIS' program, focusing on students from 8th grade to undergraduates, to position India as a global leader in geospatial technology through skill development and innovation., December 2023: In collaboration with Bayanat, the UAE Space Agency revealed the initiation of the operational phase of the Geospatial Analytics Platform during its participation in organizing the Space at COP28 initiatives., November 2023: USAID unveiled its inaugural Geospatial Strategy, designed to harness geospatial data and technology for more targeted international program delivery. The strategy foresees a future where geographic methods enhance the effectiveness of USAID's efforts by pinpointing development needs, monitoring program implementation, and evaluating outcomes based on location., May 2023: TomTom International BV, a geolocation technology specialist, expanded its partnership with Alteryx, Inc. Through this partnership, Alteryx will use TomTom’s Maps APIs and location data to integrate spatial data into Alteryx’s products and location insights packages, such as Alteryx Designer., May 2023: Oracle Corporation announced the launch of Oracle Spatial Studio 23.1, available in the Oracle Cloud Infrastructure (OCI) marketplace and for on-premises deployment. Users can browse, explore, and analyze geographic data stored in and managed by Oracle using a no-code mapping tool., May 2023: CAPE Analytics, a property intelligence company, announced an enhanced insurance offering by leveraging Google geospatial data. Google’s geospatial data can help CAPE create appropriate solutions for insurance carriers., February 2023: HERE Global B.V. announced a collaboration with Cognizant, an information technology, services, and consulting company, to offer digital customer experience using location data. In this partnership, Cognizant will utilize the HERE location platform’s real-time traffic data, weather, and road attribute data to develop spatial intelligent solutions for its customers., July 2022: Athenium Analytics, a climate risk analytics company, launched a comprehensive tornado data set on the Esri ArcGIS Marketplace. This offering, which included the last 25 years of tornado insights from Athenium Analytics, would extend its Bronze partner relationship with Esri. . Key drivers for this market are: Advancements in Technologies to Fuel Market Growth. Potential restraints include: Lack of Standardization Coupled with Shortage of Skilled Workforce to Limit Market Growth. Notable trends are: Rise of Web-based GIS Platforms Will Transform Market.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geospatial Analytics Market size was valued at USD 98.93 billion in 2023 and is projected to reach USD 227.04 billion by 2032, exhibiting a CAGR of 12.6 % during the forecasts period. The Geospatial Analytics Market describes an application of technologies and approaches processing geographic and spatial data for intelligence and decision-making purposes. This market comprises of mapping tools and software, spatial data and geographic information systems (GIS) used in various fields including urban planning, environmental, transport and defence. Use varies from inventory tracking and control to route optimization and assessment of changes in environment. Other trends are the growth of big data and machine learning to improve the predictive methods, the improved real-time data processing the use of geographic data in combination with other technologies, for example, IoT and cloud. Some of the factors that are fuelling the need to find a marketplace for GIS solutions include; Increasing importance of place-specific information Increasing possibilities for data collection The need to properly manage spatial information in a high stand environment. Recent developments include: In May 2023, Google launched Google Geospatial Creator, a powerful tool that allows users to create immersive AR experiences that are both accurate and visually stunning. It is powered by Photorealistic 3D Tiles and ARCore from Google Maps Platform and can be used with Unity or Adobe Aero. Geospatial Creator provides a 3D view of the world, allowing users to place their digital content in the real world, similar to Google Earth and Google Street View. , In April 2023, Hexagon AB launched the HxGN AgrOn Control Room. It is a mobile app that allows managers and directors of agricultural companies to monitor all field operations in real time. It helps managers identify and address problems quickly, saving time and money. Additionally, the app can help to improve safety by providing managers with a way to monitor the location and status of field workers. , In December 2022, ESRI India announced the availability of Indo ArcGIS offerings on Indian public clouds and services to provide better management, collecting, forecasting, and analyzing location-based data. , In May 2022, Trimble announced the launch of the Trimble R12i GNSS receiver, which has a powerful tilt adjustment feature. It enables land surveyors to concentrate on the task and finish it more quickly and precisely. , In May 2021, Foursquare purchased Unfolded, a US-based provider of location-based services. This US-based firm provides location-based services and goods, including data enrichment analytics and geographic data visualization. With this acquisition, Foursquare aims to provide its users access to various first and third-party data sets and integrate them with the geographical characteristics. , In January 2021, ESRI, a U.S.-based geospatial image analytics solutions provider, introduced the ArcGIS platform. ArcGIS Platform by ESRI operates on a cloud consumption paradigm. App developers generally use this technology to figure out how to include location capabilities in their apps, business operations, and goods. It aids in making geospatial technologies accessible. .
COUNTY ADDRESSINGThis dataset represents officially documented Addresses in Valley County Idaho. The spatial data was originally created for Valley County Emergency Service and Response and location services but is used throughout the County and by the public for many purposes. Addresses are updated daily through the flow of information from the County Planning and Zoning department, as well as from the municipalities and Assessors office. Each municipality (i.e. Cascade, Donnelly, McCall) is responsible for maintaining and administering addressing within their impact areas.GOOGLE ADDRESSINGGoogle Maps is a subset of the Google Earth program, which focuses it's update energies more frequently on bigger cities and densely populated areas. In rural areas, such as Valley County, Google addressing updates are more sporadic and the frequency is unknown. However, Google address ranges and geocoding already provide a robust level of addressing meaning new homes on already-existing streets are more likely to be represented. When new streets and subdivisions are created, the updates may happen more slowly which is why many times throughout the year, Valley County IT sends address updates to Google through the Geo Data Upload portal to try and ensure that Google is up-to-date. To find out how you can update addresses within Google on your own, visit: Set or change your home & work addresses - Computer - Google Maps Help
The Digital Geomorphic-GIS Map of Fort Raleigh National Historic Site (1:24,000 scale 2007 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (fora_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (fora_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (fora_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (fora_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (fora_geomorphology_metadata.txt or fora_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of the Acadian Cultural Center Unit, Jean Lafitte National Historical Park and Preserve, Louisiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (accu_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (accu_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (accu_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (jela_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jela_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (accu_geology_metadata_faq.pdf). Please read the jela_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Louisiana Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (accu_geology_metadata.txt or accu_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Users can browse the map interactively or search by lot ID or address. Available basemaps include aerial images, topographic contours, roads, town landmarks, conserved lands, and individual property boundaries. Overlays display landuse, zoning, flood, water resources, and soil characteristics in relation to neighborhoods or parcels. Integration with Google Street View offers enhanced views of the 2D map location. Other functionality includes map markup, printing, viewing the property record card, and links to official tax maps where available.NRPC's implementation of MapGeo dates back to 2013, however it is the decades of foundational GIS data development at NRPC and partner agencies that has enabled its success. NRPC refreshes the assessing data yearly; the map data is maintained in an ongoing manner.
The Digital Geologic-GIS Map of the Brooks Range and Vicinity, Alaska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (arcn_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML files for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (arcn_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (arcn_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (cakr_gaar_kova_noat_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (arcn_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (arcn_geology_metadata_faq.pdf). Please read the cakr_gaar_kova_noat_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (arcn_geology_metadata.txt or arcn_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map digital data scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Unpublished Digital Geologic-GIS Map of Lyndon B. Johnson National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (lyjo_geology.gdb), a 10.1 ArcMap (.mxd) map document (lyjo_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lyjo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lyjo_geology_gis_readme.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (lyjo_geology_metadata.txt or lyjo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Lyndon B. Johnson National Historical Park.
This map shows all grants awarded by the Utah State Parks and Recreation for trail maintenance and New trails from January 1st, 2005 to Dec 31, 2012. All amenities and attributes are additions created through the grant. For example a trail with a trail head means that the trail head was created or maintained during the grant. A restroom means the restroom was installed or maintained during the grant but lack of restroom simply means no restroom was serviced during the particular grant. Accuracy of maps is based on paper maps submitted during the application as well as completeness of the application. Maps were then digitized using a combination of Google Earth 7.1.1.1580 and Google Maps.Data was then imported to ArcGIS 10 and then uploaded to ArcGIS Online.
The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8