100+ datasets found
  1. e

    Delete students and content in your schools ArcGIS Online subscription -...

    • gisinschools.eagle.co.nz
    Updated Mar 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2018). Delete students and content in your schools ArcGIS Online subscription - Video [Dataset]. https://gisinschools.eagle.co.nz/datasets/delete-students-and-content-in-your-schools-arcgis-online-subscription-video
    Explore at:
    Dataset updated
    Mar 5, 2018
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    Learn how to use Admin Tools for ArcGIS Online to delete students and the content (including WebMaps and WebApps). You should be thinking about removing student and content on your schools subscription at least once a year.You should be thinking about removing students and content on your subscription at least once a year.To setup Admin Tools for ArcGIS Online on your schools account refer to https://arcg.is/0z4H4rUpdated December 2022.

  2. a

    Computer Ownership and Internet Subscription

    • equity-indicators-kingcounty.hub.arcgis.com
    Updated Apr 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2023). Computer Ownership and Internet Subscription [Dataset]. https://equity-indicators-kingcounty.hub.arcgis.com/datasets/kingcounty::computer-ownership-and-internet-subscription/about
    Explore at:
    Dataset updated
    Apr 11, 2023
    Dataset authored and provided by
    King County
    Area covered
    Description

    This table contains details about computer ownership and internet subscription by demographic characteristic in King County. This dataset has been developed for the Determinant of Equity - Digital Equity presentation. In includes information about Access to an Internet Subscription and Computer in the Household equity indicators. Fields describe the total number of households (Denominator), number of households without a computer or without an internet subscription (Numerator), the type of equity indicator being measured (Indicator), and the value that describes this measurement (Indicator Value).

    The data for this dataset was compiled from the American Community Survey (ACS) 1-year and 5-year estimates. Vintages

    1-year estimates: 2017-2019, 2021-2022 5-year estimates: 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022

    Variables

    B28002 - PRESENCE AND TYPES OF INTERNET SUBSCRIPTIONS IN HOUSEHOLD B28003 - PRESENCE OF A COMPUTER AND TYPE OF INTERNET SUBSCRIPTION IN HOUSEHOLD B28004 - HOUSEHOLD INCOME IN THE LAST 12 MONTHS B28005 - AGE BY PRESENCE OF A COMPUTER AND TYPES OF INTERNET SUBSCRIPTION IN HOUSEHOLD B28009B - PRESENCE OF A COMPUTER AND TYPE OF INTERNET SUBSCRIPTION IN HOUSEHOLD (BLACK OR AFRICAN AMERICAN ALONE HOUSEHOLDER) - B28009I - PRESENCE OF A COMPUTER AND TYPE OF INTERNET SUBSCRIPTION IN HOUSEHOLD (HISPANIC OR LATINO HOUSEHOLDER)

    For more information about King County's equity efforts, please see:

    Equity, Racial & Social Justice Vision Ordinance 16948 describing the determinates of equity Determinants of Equity and Data Tool

  3. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  4. Z

    Data from: The application of unmanned aerial vehicle (UAV) surveys and GIS...

    • data.niaid.nih.gov
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomczyk, Aleksandra M.; Ewertowski, Marek W.; Creany, Noah; Ancin-Murguzur, Francisco Javier; Monz, Christopher (2023). The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions - dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8303439
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
    Department of Environment and Society, Utah State University, Logan, Utah
    The Arctic Sustainability Lab, Faculty of Biosciences Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
    Authors
    Tomczyk, Aleksandra M.; Ewertowski, Marek W.; Creany, Noah; Ancin-Murguzur, Francisco Javier; Monz, Christopher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data used to test the protocol for high-resolution mapping and monitoring of recreational impacts in protected natural areas (PNAs) using unmanned aerial vehicle (UAV) surveys, Structure-from-Motion (SfM) data processing and geographic information systems (GIS) analysis to derive spatially coherent information about trail conditions (Tomczyk et al., 2023). Dataset includes the following folders:

    Cocora_raster_data (~3GB) and Vinicunca_raster_data (~32GB) - a very high-resolution (cm-scale) dataset derived from UAV-generated images. Data covers selected recreational trails in Colombia (Valle de Cocora) and Peru (Vinicunca). UAV-captured images were processed using the structure-from-motion approach in Agisoft Metashape software. Data are available as GeoTIFF files in the UTM projected coordinate system (UTM 18N for Colombia, UTM 19S for Peru). Individual files are named as follows [location]_[year]_[product]_[raster cell size].tif, where:

    [location] is the place of data collection (e.g., Cocora, Vinicucna)

    [year] is the year of data collection (e.g., 2023)

    [product] is the tape of files: DEM = digital elevation model; ortho = orthomosaic; hs = hillshade

    [raster cell size] is the dimension of individual raster cell in mm (e.g., 15mm)

    Cocora_vector_data. and Vinicunca_vector_data – mapping of trail tread and conditions in GIS environment (ArcPro). Data are available as shp files. Data are in the UTM projected coordinate system (UTM 18N for Colombia, UTM 19S for Peru).

    Structure-from-motio n processing was performed in Agisoft Metashape (https://www.agisoft.com/, Agisoft, 2023). Mapping was performed in ArcGIS Pro (https://www.esri.com/en-us/arcgis/about-arcgis/overview, Esri, 2022). Data can be used in any GIS software, including commercial (e.g. ArcGIS) or open source (e.g. QGIS).

    Tomczyk, A. M., Ewertowski, M. W., Creany, N., Monz, C. A., & Ancin-Murguzur, F. J. (2023). The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions. International Journal of Applied Earth Observations and Geoinformation, 103474. doi: https://doi.org/10.1016/j.jag.2023.103474

  5. d

    Data from: Map 12: ArcGIS layer showing contours of the difference in May...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Map 12: ArcGIS layer showing contours of the difference in May Mean water levels from the water-year periods 1990 to 1999 and 2000 to 2009 (feet) [Dataset]. https://catalog.data.gov/dataset/map-12-arcgis-layer-showing-contours-of-the-difference-in-may-mean-water-levels-from-the-w
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  6. c

    Single Climate Model, 30-year Rolling Average Minimum and Maximum Average...

    • gis.data.cnra.ca.gov
    • data.cnra.ca.gov
    • +6more
    Updated Sep 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Nature Organization (2021). Single Climate Model, 30-year Rolling Average Minimum and Maximum Average Temperatures [Dataset]. https://gis.data.cnra.ca.gov/content/CAnature::single-climate-model-30-year-rolling-average-minimum-and-maximum-average-temperatures
    Explore at:
    Dataset updated
    Sep 13, 2021
    Dataset authored and provided by
    CA Nature Organization
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains a 30-year rolling average of annual average minimum and maximum temperatures from the four models and two greenhouse gas (RCP) scenarios included in the four model ensemble for the years 1950-2099.The year identified is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065.

    The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are:

    HadGEM2-ES (warm/dry),CanESM2 (average), CNRM-CM5 (cooler/wetter), and MIROC5 the model least like the others to improve coverage of the range of outcomes.

    These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff.

    Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/

    Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.

  7. Contra Costa 2025 Roll Year

    • cdtfa.hub.arcgis.com
    • gis.data.ca.gov
    • +1more
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2025). Contra Costa 2025 Roll Year [Dataset]. https://cdtfa.hub.arcgis.com/maps/3d72905bbec7400ea3f466dfb00e9821
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year

  8. Santa Barbara 2025 Roll Year

    • gis.data.ca.gov
    • cdtfa.hub.arcgis.com
    • +3more
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2025). Santa Barbara 2025 Roll Year [Dataset]. https://gis.data.ca.gov/datasets/CDTFA::santa-barbara-2025-roll-year
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year

  9. e

    Year 11 - GIS in NZ Schools

    • gisinschools.eagle.co.nz
    • resources-gisinschools-nz.hub.arcgis.com
    Updated Sep 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2021). Year 11 - GIS in NZ Schools [Dataset]. https://gisinschools.eagle.co.nz/datasets/year-11-gis-in-nz-schools-1
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    New Zealand
    Description

    To do more than the very basics of GIS you will need to sign up for a FREE Schools ArcGIS Online subscription. To sign up for a subscription contact gisinschools@eagle.co.nz

  10. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • pacificgeoportal.com
    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  11. Amador 2025 Roll Year

    • gis.data.ca.gov
    • hub.arcgis.com
    • +1more
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2025). Amador 2025 Roll Year [Dataset]. https://gis.data.ca.gov/maps/fa148448876947568e2ca3d75a167fe4
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year

  12. r

    Historical Annual Temperature (CONUS) (Image Service)

    • opendata.rcmrd.org
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Nov 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). Historical Annual Temperature (CONUS) (Image Service) [Dataset]. https://opendata.rcmrd.org/datasets/11446da3eaa04ecc9b086ffcaa1c9818
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans. The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation and air temperature, including both Alaskan and lower 48 datasets. Data from the lower 48 were downloaded from here: https://www.fs.usda.gov/rm/boise/AWAE/projects/national-forest-climate-change-maps.html, and Alaskan data came from here: https://www.snap.uaf.edu/tools/data-downloads. Historical data are compared with RCP 8.5 projections from the 2080s.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.

  13. c

    California Land Ownership

    • gis.data.cnra.ca.gov
    • data.cnra.ca.gov
    • +8more
    Updated Sep 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Forestry and Fire Protection (2019). California Land Ownership [Dataset]. https://gis.data.cnra.ca.gov/datasets/CALFIRE-Forestry::california-land-ownership
    Explore at:
    Dataset updated
    Sep 14, 2019
    Dataset authored and provided by
    California Department of Forestry and Fire Protection
    Area covered
    Description

    This dataset was updated May, 2025.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes:* Clipping input datasets to the California boundary* Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc)* Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California.* Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only.* Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs)* In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD* As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset. Data Sources:* GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf* US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore* Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases* Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov* Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.html Data Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.25_1: The CPAD Input dataset was amended to merge large gaps in certain areas of the state known to be erroneous, such as Yosemite National Park, and to eliminate overlaps from the original input. The FWS input dataset was updated in February of 2025, and the DOD input dataset was updated in October of 2024. The BIA input dataset was the same as was used for the previous ownership version.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.

  14. d

    Data from: Map 13: ArcGIS layer showing contours of the difference in...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Map 13: ArcGIS layer showing contours of the difference in October Mean water levels from the water-year periods 1990 to 1999 and 2000 to 2009 (feet) [Dataset]. https://catalog.data.gov/dataset/map-13-arcgis-layer-showing-contours-of-the-difference-in-october-mean-water-levels-from-t
    Explore at:
    Dataset updated
    Oct 30, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  15. Average Annual Precipitation

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Sep 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). Average Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d87460083a794241ad5bd85775f098ab
    Explore at:
    Dataset updated
    Sep 26, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Total annual precipitation is shown along with elevation hillshade using the NAGI method. Hillshade is from Esri Elevation Service, and precipitation data is taken from WMO and FAO rain gages in addition to a number of national datasets. The annual and monthly averages for the period 1950-2000 was calculated and interpolated by WorldClim.org, a collaboration between the University of California, Berkeley, the International Cetner for Tropical Agrilculture, and the Cooperative Research Centre for Tropical Rainforest Ecology and Management.

  16. Sonoma 2025 Roll Year

    • cdtfa.hub.arcgis.com
    • gis.data.ca.gov
    • +1more
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2025). Sonoma 2025 Roll Year [Dataset]. https://cdtfa.hub.arcgis.com/maps/CDTFA::sonoma-2025-roll-year/about
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year

  17. a

    Percentage of Households Without a Broadband Internet Subscription

    • hub.arcgis.com
    • data.cityofrochester.gov
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Percentage of Households Without a Broadband Internet Subscription [Dataset]. https://hub.arcgis.com/maps/a096e2f4545c403ab1d0a68ddc8e78a0
    Explore at:
    Dataset updated
    Apr 7, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    This web map visualizes the percentage of households in a given geography that do not subscribe to broadband internet services. Data are shown by tract, county, and state boundaries -- zoom out to see data visualized for larger geographies. The map also displays the boundary lines for the jurisdiction of Rochester, NY (visible when viewing the tract level data), as this map was created for a Rochester audience.This web map draws from an Esri Demographics service that is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2014-2018ACS Table(s): B28001, B28002 (Not all lines of ACS table B28002 are available in this feature layer)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 19, 2019National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  18. Multi-Year Program - Spot 2025 - 2030

    • gis-idot.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Nov 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Illinois Department of Transportation (2019). Multi-Year Program - Spot 2025 - 2030 [Dataset]. https://gis-idot.opendata.arcgis.com/datasets/multi-year-program-spot-2025-2030
    Explore at:
    Dataset updated
    Nov 18, 2019
    Dataset authored and provided by
    Illinois Department of Transportationhttp://www.dot.il.gov/
    License

    Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
    License information was derived automatically

    Area covered
    Description

    The priorities of this program are to improve the National Highway System (NHS) and structurally deficient bridges on the NHS. There are more than 7,000 miles of state-maintained roads on the NHS and 4,092 bridges on the NHS. The department’s focus on the NHS is due in large part to new federal performance rules that require state departments of transportation to prioritize the condition of the NHS system. New federal performance measures were developed as a way to, “increase the accountability and transparency of the federal-aid highway program and provides for a framework to support improved investment decision making through a focus on performance outcomes for key national transportation goals.”Through IDOT’s MYP, the department strives to provide details on the plan’s funding, process, and proposed projects and initiatives that will preserve, maintain, improve, and expand Illinois’ system. It is IDOT’s expectation that these efforts continue to provide Illinois with safe, reliable, and accessible travel and freight options.

  19. a

    San Benito 2025 Roll Year

    • hub.arcgis.com
    • gis.data.ca.gov
    • +2more
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2025). San Benito 2025 Roll Year [Dataset]. https://hub.arcgis.com/maps/14800eba9a264f53a929a28239e0aaad
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    California Department of Tax and Fee Administration
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Tax rate area boundaries and related data based on changes filed with the Board of Equalization per Government Code 54900 for the specified assessment roll year. The data included in this map is maintained by the California State Board of Equalization and may differ slightly from the data published by other agencies. BOE_TRA layer = tax rate area boundaries and the assigned TRA number for the specified assessment roll year; BOE_Changes layer = boundary changes filed with the Board of Equalization for the specified assessment roll year; Data Table (C##_YYYY) = tax rate area numbers and related districts for the specified assessment roll year

  20. a

    ESRI Traffic Service

    • hub.arcgis.com
    • hub-gema-soc.opendata.arcgis.com
    Updated Jan 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Emergency Management & Homeland Security Agency (2018). ESRI Traffic Service [Dataset]. https://hub.arcgis.com/maps/28d6cf5e19084fc3b58db8646968ec2b
    Explore at:
    Dataset updated
    Jan 26, 2018
    Dataset authored and provided by
    Georgia Emergency Management & Homeland Security Agency
    Area covered
    Description

    The map layers in this service provide color-coded maps of the traffic conditions you can expect for the present time (the default). The map shows present traffic as a blend of live and typical information. Live speeds are used wherever available and are established from real-time sensor readings. Typical speeds come from a record of average speeds, which are collected over several weeks within the last year or so. Layers also show current incident locations where available. By changing the map time, the service can also provide past and future conditions. Live readings from sensors are saved for 12 hours, so setting the map time back within 12 hours allows you to see a actual recorded traffic speeds, supplemented with typical averages by default. You can choose to turn off the average speeds and see only the recorded live traffic speeds for any time within the 12-hour window. Predictive traffic conditions are shown for any time in the future.The color-coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation, and field operations. A color-coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes.The map also includes dynamic traffic incidents showing the location of accidents, construction, closures, and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis.Data sourceEsri’s typical speed records and live and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds.Data coverageThe service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. Look at the coverage map to learn whether a country currently supports traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, visit the directions and routing documentation and the ArcGIS Help.SymbologyTraffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%To view live traffic only—that is, excluding typical traffic conditions—enable the Live Traffic layer and disable the Traffic layer. (You can find these layers under World/Traffic > [region] > [region] Traffic). To view more comprehensive traffic information that includes live and typical conditions, disable the Live Traffic layer and enable the Traffic layer.ArcGIS Online organization subscriptionImportant Note:The World Traffic map service is available for users with an ArcGIS Online organizational subscription. To access this map service, you'll need to sign in with an account that is a member of an organizational subscription. If you don't have an organizational subscription, you can create a new account and then sign up for a 30-day trial of ArcGIS Online.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GIS in Schools - Teaching Materials - New Zealand (2018). Delete students and content in your schools ArcGIS Online subscription - Video [Dataset]. https://gisinschools.eagle.co.nz/datasets/delete-students-and-content-in-your-schools-arcgis-online-subscription-video

Delete students and content in your schools ArcGIS Online subscription - Video

Explore at:
Dataset updated
Mar 5, 2018
Dataset authored and provided by
GIS in Schools - Teaching Materials - New Zealand
Description

Learn how to use Admin Tools for ArcGIS Online to delete students and the content (including WebMaps and WebApps). You should be thinking about removing student and content on your schools subscription at least once a year.You should be thinking about removing students and content on your subscription at least once a year.To setup Admin Tools for ArcGIS Online on your schools account refer to https://arcg.is/0z4H4rUpdated December 2022.

Search
Clear search
Close search
Google apps
Main menu