The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
Succeeds and combines earlier versions of the tools - Topography Toolbox for ArcGIS 9.x - http://arcscripts.esri.com/details.asp?dbid=15996Riparian Topography Toolbox for calculating Height Above River and Height Above Nearest Drainage - http://arcscripts.esri.com/details.asp?dbid=16792PRISM Data Helper - http://arcscripts.esri.com/details.asp?dbid=15976Tools:UplandBeer’s AspectMcCune and Keon Heat Load IndexLandform ClassifcationPRISM Data HelperSlope Position ClassificationSolar Illumination IndexTopographic Convergence/Wetness IndexTopographic Position IndexRiparianDerive Stream Raster using Cost DistanceHeight Above Nearest DrainageHeight Above RiverMiscellaneousMoving Window Correlation
The Minnesota DNR Toolbox provides a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR.
Toolsets included in MNDNR Tools:
- Analysis Tools
- Conversion Tools
- General Tools
- LiDAR and DEM Tools
- Sampling Tools
The application download includes a comprehensive help document, which you can also access separately here: ArcGISPro_MNDNR_Toolbox_Pro_User_Guide.pdf
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Watershed delineation, drainage network generation and determination of river hydraulic characteristics are important issues in hydrological sciences. In general, this information can be obtained from Digital Elevation Models (DEM) processing within GIS commercial softwares, such as ArcGIS and IDRISI. On the other hand, the use of open source GIS tools has increased significantly, and their advantages include free distribution, continuous development by user communities and full customization for specific requirements. Herein, we present the IPH-Hydro Tools, an open source tool coupled to MapWindow GIS software designed for watershed topology acquisition, including preprocessing steps in hydrological models such as MGB-IPH. In addition, several tests were carried out assessing the performance and applicability of the developed tool, given by a comparison with available GIS packages (ArcGIS, IDRISI, WhiteBox) for similar purposes. The IPH-Hydro Tools provided satisfactory results on tested applications, allowing for better drainage network and less processing time for catchment delineation. Regarding its limitations, the developed tool was incompatible with huge terrain data and showed some difficulties to represent drainage networks in extensive flat areas, which can occur in reservoirs and large rivers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.
This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.
DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.
DNRGPS does not require installation. Simply run the application .exe
See the DNRGPS application documentation for more details.
Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs
Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.
Prerequisite: .NET 4 Framework
DNR Data and Software License Agreement
Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.
GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live includes:
Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Inspired by "Add GTFS to a Network Dataset" tool by Melinda Morang, I have generated this tool to use GTFS public transit data in ArcGIS so you can run schedule-aware analyses without using the Network Analyst.
The abundant access is the first in series of tools I am developing for ArcGIS to analyse the GTFS data. Simplicity is the main objective here, therefore all the analysis will be done in-fly.
The term "abundant access" is borrowed from Jarrett Walker's book, Human transit. You can use the abundant access to perform transit/pedestrian accessibility analyses, controlling for the number of transfers, walking between transfers, walking to transit and walking from transit. My aim is to develop a method that is useful for practitioners and decision-makers to make day-to-day decisions.
Note: No installation is necessary. This tool is only available for ArcGIS 10.4 or higher. It also works with ArcGIS Pro. This tool is still under development so please feel free to contact me if you encounter bugs or other problems or you simply have ideas or suggestions.For more information and updates, visit www.spatialanalyst.ir.
Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
The Street_and_Address_Composite will return a geographic coordinate when a street address is entered. A user can enter an address either manually or by bulk input from a database or other source.The geocoder returns a coordinate pair and standardized address for each input address it is able to match. The NYS ITS Geospatial Services geocoder uses a series of combinations of reference data and configuration parameters to optimize both the likelihood of a match and the quality of the results. The reference data supporting the geocoder is stored in Federal Geographic Data Committee (FGDC) standard.The first composite locator (Street_and_Address_Composite) is made up of the following set of locators which are most likely to return a high quality hit. The locators are listed in the order in which they will be accessed along with a brief description of the locator's source data. These six locators will generate the majority of the results when geocoding addresses.Locator NameSource DataDescription1A_SAM_AP_ZipNameSAM Address PointsSAM address points using the postal zip code name for the city name in the locator.1B_SAM_AP_CTNameSAM Address PointsSAM address points. The city or town name is used for the city name in the locator.1C_SAM_AP_PlaceNameSAM Address PointsSAM address points. The city name is populated using the NYS Villages and Indian Reservations, the Census Designated Places and Alternate Acceptable Zip Code Names from the USPS. These names do not exist everywhere so there will be a limited number of points in this locator.3A_SS_ZipNameNYS Street SegmentsNYS Street Segments dataset using the postal zip code name for the city name in the locator. The location is interpolated from an address range on the street segment. The city name can be different for the left and right sides of the streets.3B_SS_CTNameNYS Street SegmentsNYS Street Segments using the city or town name for the city name in the locator. The location is interpolated from an address range on the street segment.3C_SS_PlaceNameNYS Street SegmentsNYS Street Segments using an alternate place name for the city field. This field is populated using the NYS Villages and Indian Reservations, the Census Designated Places and Alternate Acceptable Zip Code Names from the USPS. These areas do not exist everywhere so there will be a limited number of segments with this attribute. The location is interpolated from an address range on the street segment.For more information about the geocoding service, please visit: https://gis.ny.gov/address-geocoder.For documentation on how to add these locators to ArcGIS, please reference Adding the Statewide Geocoding Web Service. If you would like these locators to be your default locators in ArcGIS, copy DefaultLocators.xml to C:\Users<username>\AppData\Roaming\ESRI\Desktop10.X\Locators, where
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database created for replication of GeoStoryTelling. Our life stories evolve in specific and contextualized places. Although our homes may be our primarily shaping environment, our homes are themselves situated in neighborhoods that expose us to the immediate “real world” outside home. Indeed, the places where we are currently experiencing, and have experienced life, play a fundamental role in gaining a deeper and more nuanced understanding of our beliefs, fears, perceptions of the world, and even our prospects of social mobility. Despite the immediate impact of the places where we experience life in reaching a better understanding of our life stories, to date most qualitative and mixed methods researchers forego the analytic and elucidating power that geo-contextualizing our narratives bring to social and health research. From this view then, most research findings and conclusions may have been ignoring the spatial contexts that most likely have shaped the experiences of research participants. The main reason for the underuse of these geo-contextualized stories is the requirement of specialized training in geographical information systems and/or computer and statistical programming along with the absence of cost-free and user-friendly geo-visualization tools that may allow non-GIS experts to benefit from geo-contextualized outputs. To address this gap, we present GeoStoryTelling, an analytic framework and user-friendly, cost-free, multi-platform software that enables researchers to visualize their geo-contextualized data narratives. The use of this software (available in Mac and Windows operative systems) does not require users to learn GIS nor computer programming to obtain state-of-the-art, and visually appealing maps. In addition to providing a toy database to fully replicate the outputs presented, we detail the process that researchers need to follow to build their own databases without the need of specialized external software nor hardware. We show how the resulting HTML outputs are capable of integrating a variety of multi-media inputs (i.e., text, image, videos, sound recordings/music, and hyperlinks to other websites) to provide further context to the geo-located stories we are sharing (example https://cutt.ly/k7X9tfN). Accordingly, the goals of this paper are to describe the components of the methodology, the steps to construct the database, and to provide unrestricted access to the software tool, along with a toy dataset so that researchers may interact first-hand with GeoStoryTelling and fully replicate the outputs discussed herein. Since GeoStoryTelling relied on OpenStreetMap its applications may be used worldwide, thus strengthening its potential reach to the mixed methods and qualitative scientific communities, regardless of location around the world. Keywords: Geographical Information Systems; Interactive Visualizations; Data StoryTelling; Mixed Methods & Qualitative Research Methodologies; Spatial Data Science; Geo-Computation.
Medium resolution true color ortho images for the Commonwealth of Massachusetts, distributed by MassGIS. The photography for the entire commonwealth was captured in April 2005 when deciduous trees were mostly bare and the ground was generally free of snow. Original imagery pixel resolution is 1/2-meter.Original image type is 4-band (RGBN) natural color (Red, Green, Blue) and Near infrared in 8 bits (values ranging 0-255) per band format. This map service contains only the RGB bands and uses the "contrast stretched" JPEG 2000 versions MassGIS Produced from the original GeoTiff files. Image horizontal accuracy is +/-3 meters at the 95% confidence level at the nominal scale of 1:5,000. This digital orthoimagery can serve a variety of purposes, from general planning, to field reference for spatial analysis, to a tool for development and revision of vector maps. It can also serve as a reference layer or basemap for myriad applications inside geographic information system (GIS) software. The project was funded by the Executive Office of Environmental Affairs, the Department of Environmental Protection, the Massachusetts Highway Department, and the Department of Public Health.For full metadata visit https://www.mass.gov/info-details/massgis-data-2005-aerial-imagery.
Gridded National Soil Survey Geographic Database (gNATSGO)gNATSGO for AllRaster Soil Surveys (RSS)Web Soil SurveyGridded Soil Survey Geographic (gSSURGO) DatabasegNATSGO now uses the GeoPackage version of the SQLite SSURGO Template database instead of an ESRI File Geodatabase.
In 2025, only a single large gNATSGO database was created for all areas of the United States and Island Jurisdictions. State tiles were not produced.
This database is designed to be used with the new SSURGO Portal application Soil Data Viewer (SDV) tool, which has the same ratings as Web Soil Survey.
Access SSURGO Portal at https://www.nrcs.usda.gov/resources/data-and-reports/ssurgo-portal.
Refer to the Quick Start Guide for SSURGO Portal installation instructions.
You can install SSURGO Portal and then use SDV to make thematic maps for the entire United States. Refer to the SSURGO Portal User Guide for SDV instructions.
You can also refer to the 6 minute mark of this youtube video. https://www.youtube.com/watch?v=4FGuxqxbCG0
SDV is a replacement for the old Soil Data Viewer ArcMap tool and the old GSSURGO Create Soil Map ArcMap tool.
DB Browser is a free application for viewing and querying SQLite files. GeoPackages are SQLite files and can be opened in DB Browser.
Rasters of soil map units are delivered as 30m cell size tif files, with dbf attribute tables, statistics, and pyramids pre built.
The source.shp file shows the original source of data, with the options being Raster Soil Survey (RSS), SSURGO, and STATSGO.
The mupolygon, mupoint, muline, featpoint, featline, featdesc, and sapolygon feature classes with the database are empty but were retained due to database schema requirements.
Contact soilshotline@usda.gov for assistance.
GIST Impact in partnership with the Integrated Biodiversity Assessment Tool (IBAT) offers a suite of science-based ESG data products that provide an accurate and comprehensive picture of companies’ impacts and dependencies on nature.
The data provides valuable insights into the intricate relationship between corporate assets and biodiversity hotspots. The spreadsheet provides a holistic view of asset distribution in proximity to key biodiversity areas (KBA) and the World Database on Protected Areas (WDPA). Organizations can therefore assess nature-related risks and identify areas of opportunity using GIST Impact’s Biodiversity Proximity Analysis ESG Data.
By defining a buffer as an influence area, we have carefully determined the assets intersecting with both KBA and WDPA boundaries. Our analysis extends beyond the mere identification of asset intersections, delving into the realm of environmental impact. We have thoroughly examined the influence areas of assets located within KBA regions, identifying the presence of IUCN Red List threatened species. This critical assessment sheds light on the potential impact of corporate activities on endangered species, emphasizing the need for proactive conservation measures.
Biodiversity Proximity Risk Data allows organizations to: 1. Understand priority asset locations of companies close to biodiversity hotspots 2. Gain granular insights on species near assets at a very fine resolution 3. Access GIS maps overlaid with business asset locations to evaluate biodiversity hotspots, as recommended by TNFD 4. Leverage our extensive asset location database with millions of assets tagged by company, sector and type of asset
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of Arizona Dr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAADaphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
This specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.
How Do We Create Polygons? -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct detailed indoor polygons. This meticulous process ensures higher accuracy and consistency. -We verify our polygons through multiple quality checks, focusing on accuracy, relevance, and completeness.
What's More? -Custom Polygon Creation: Our team can build polygons for any location or category based on your specific requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.
Unlock the Power of POI and Geospatial Data With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market analyses to identify growth opportunities. -Pinpoint the ideal location for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute targeted, location-driven marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.
Why Choose LocationsXYZ? LocationsXYZ is trusted by leading brands to unlock actionable business insights with our spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI data. Request your free sample today and explore how we can help accelerate your business growth.
Property Gateway is a leading-edge Internet tool built to provide free and fee-based online access to Oakland County's land and property information including tax parcel reports and maps. Reports and maps can be purchased via a credit card transaction; recurring users request a business account. Visit Property Gateway, HERE.
The Minnesota DNR Toolbox and Hydro Tools provide a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR. All tools require at least ArcGIS 10+.
If you create a GDRS using GDRS Manager and include this toolbox resource and MNDNR Quick Layers, the DNR toolboxes will automatically be added to the ArcToolbox window whenever Quick Layers GDRS Location is set to the GDRS location that has the toolboxes.
Toolsets included in MNDNR Tools V10:
- Analysis Tools
- Conversion Tools
- Division Tools
- General Tools
- Hydrology Tools
- LiDAR and DEM Tools
- Raster Tools
- Sampling Tools
These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.