94 datasets found
  1. Actual Evapotranspiration (Mature Support)

    • landwirtschaft-esri-de-content.hub.arcgis.com
    • agriculture.africageoportal.com
    • +3more
    Updated Mar 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Actual Evapotranspiration (Mature Support) [Dataset]. https://landwirtschaft-esri-de-content.hub.arcgis.com/datasets/31f7c3727abf42249a43fe8f25470af4
    Explore at:
    Dataset updated
    Mar 1, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  2. USA Protected from Land Cover Conversion (Mature Support)

    • ilcn-lincolninstitute.hub.arcgis.com
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected from Land Cover Conversion (Mature Support) [Dataset]. https://ilcn-lincolninstitute.hub.arcgis.com/datasets/be68f60ca82944348fb030ca7b028cba
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  3. d

    HYCOM - Sea Water Salinity (Mature Support)

    • deepoceanobserving.org
    • digital-earth-pacificcore.hub.arcgis.com
    Updated Jun 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). HYCOM - Sea Water Salinity (Mature Support) [Dataset]. https://www.deepoceanobserving.org/datasets/da070ef9b4e64acaae0bcfad0ef85813
    Explore at:
    Dataset updated
    Jun 8, 2017
    Dataset authored and provided by
    Esri
    Area covered
    Earth
    Description

    *** The Global HYCOM Model (GOFS 3.1) was decommissioned on September 4th, 2024; as a result this layer is no longer receiving updates and has been placed in mature support. *** Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. This layer is a a 30-day window from HYCOM, reported in 3-hour time intervals between 08/07/2024 and 09/11/2024; it provides access to the last ~30 days of the HYCOM model before it was retired/decommissioned. This layer does not receive updates.The HYbrid Coordinate Ocean Model (HYCOM) is a product from the HYCOM Consortium that forecasts global ocean conditions. The HYCOM + NCODA Global 1/12° Analysis (GLBy0.08/expt_93.0) provides five variables including Sea Surface Height as well as eastward velocity, northward velocity, in-situ temperature, and salinity at 40 vertical depth levels ranging from 0 m at the ocean surface to 5,000 m.Variable Mapped: Sea Water SalinityData Projection: GCS WGS84Service Projection: GCS WGS84Extent: GlobalCell Size: 1/12 degree (~9km)Source Type: ScientificDimension(s):• Time – (regular) 3-hour increments from 08/07/2024 to 09/11/2024 (8 slices per day).• Depth – (irregular) depth increments between 0 and 5,000 m. Slices at depth 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000 m (40 vertical levels) Data Source: HYCOM (glby0pt08/expt-93pt0)Data Accessed Date: September 4, 2024What can you do with this layer?Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time enabled data using the time slider, which is set to three hour intervals by default, by Enabling Time Animation. View the depth enabled data using the depth slider. Switch between processing templates to view the different variables available. This Image Service is designed for full analysis within ArcGIS Pro and ArcMap.

  4. HYCOM - Sea Water Temperature (Mature Support)

    • digital-earth-pacificcore.hub.arcgis.com
    • deepoceanobserving.org
    • +4more
    Updated Jun 8, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). HYCOM - Sea Water Temperature (Mature Support) [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/datasets/9890130e6c9d430a88c3905947e8a867
    Explore at:
    Dataset updated
    Jun 8, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Earth
    Description

    *** The Global HYCOM Model (GOFS 3.1) was decommissioned on September 4th, 2024; as a result this layer is no longer receiving updates and has been placed in mature support. *** Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. This layer is a a 30-day window from HYCOM, reported in 3-hour time intervals between 08/07/2024 and 09/11/2024; it provides access to the last ~30 days of the HYCOM model before it was retired/decommissioned. This layer does not receive updates.The HYbrid Coordinate Ocean Model (HYCOM) is a product from the HYCOM Consortium that forecasts global ocean conditions. The HYCOM + NCODA Global 1/12° Analysis (GLBy0.08/expt_93.0) provides five variables including Sea Surface Height as well as eastward velocity, northward velocity, in-situ temperature, and salinity at 40 vertical depth levels ranging from 0 m at the ocean surface to 5,000 m.Variable Mapped: Sea Water Temperature (°C)Data Projection: GCS WGS84Service Projection: GCS WGS84Extent: GlobalCell Size: 1/12 degree (~9km)Source Type: ScientificDimension(s):• Time – (regular) 3-hour increments from 08/07/2024 to 09/11/2024 (8 slices per day).• Depth – (irregular) depth increments between 0 and 5,000 m. Slices at depth 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000 m (40 vertical levels) Data Source: HYCOM (glby0pt08/expt-93pt0)Data Accessed Date: September 4, 2024What can you do with this layer?Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time enabled data using the time slider, which is set to three hour intervals by default, by Enabling Time Animation. View the depth enabled data using the depth slider. Switch between processing templates to view the different variables available. This Image Service is designed for full analysis within ArcGIS Pro and ArcMap.

  5. a

    National Water Model (10 Day Forecast) (Mature Support)

    • sdgs.amerigeoss.org
    • geoglows.amerigeoss.org
    • +5more
    Updated Aug 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). National Water Model (10 Day Forecast) (Mature Support) [Dataset]. https://sdgs.amerigeoss.org/maps/esri::national-water-model-10-day-forecast-mature-support
    Explore at:
    Dataset updated
    Aug 24, 2016
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The National Water Model (NWM) is a new product from the National Weather Service that forecasts streamflow volume and velocity over the entire continental United States. It is a hydrologic model that predicts the flow in every river reach of the National Hydrography Dataset, mathematically modeling physical processes like snowmelt, infiltration and the movement of water through soil layers in order to determine how much of the NWS precipitation forecast becomes runoff, then routing that runoff through the river network. This is the medium term forecast, which is run once a day, predicting streamflow over the next ten days at three hour intervals.What Can You Do With This Layer?This map service is designed for fast data visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the forecast data sequentially using the time slider, which is set to three hour intervals by default, by Enabling Time Animation. This layer type is not recommended for use in analysis.RevisionsSep 23, 2020: Updated 'qout' field values for Water Bodies. Null values are now being replaced with '-9999' in order to correct an identify issue at small scales. Also updated Pop-Up to reflect that the 'qout' value is Not Available (N/A).Nov 18, 2021: Updated Feature set to v2.1 of the NWM data. Added 'qnormal' field to provide expected monthly flow for given forecast.

  6. Sea Surface Temperature (C) (Mature Support)

    • esri-disasterresponse.hub.arcgis.com
    • climate.esri.ca
    • +9more
    Updated Oct 29, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Sea Surface Temperature (C) (Mature Support) [Dataset]. https://esri-disasterresponse.hub.arcgis.com/datasets/7b421e42c17b43f8ad7222b8f71d09e7
    Explore at:
    Dataset updated
    Oct 29, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Earth
    Description

    Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.

    Sea Surface Temperature is a key climate and weather measurement used for weather prediction, ocean forecasts, tropical cyclone forecasts, and in coastal applications such as fisheries, pollution monitoring and tourism. El Niño and La Niña are two examples of climate events which are forecast through the use of sea surface temperature maps. The Naval Oceanographic Office sea surface temperature dataset is calculated from satellite-based microwave and infrared imagery. These data are optimally interpolated to provide a daily, global map of the midday (12:00 pm) sea surface temperature. Learn more about the source data. Phenomenon Mapped: Sea Surface TemperatureUnits: Degrees CelsiusTime Interval: DailyTime Extent: 2008/04/01 12:00:00 UTC to presentCell Size: 11 kmSource Type: ContinuousPixel Type: Floating PointData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global OceansSource: Naval Oceanographic OfficeUpdate Cycle: SporadicArcGIS Server URL: https://earthobs2.arcgis.com/arcgisTime: This is a time-enabled layer. It shows the average sea surface temperature during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the average of all days in the time extent. Minimum temporal resolution is one day; maximum is one month.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder. Units are in degrees Celsius, and there is a processing template to convert pixels to Fahrenheit. Do not use this layer for analysis while the Cartographic Renderer processing template is applied.This layer is part of the Living Atlas of the World that provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.

  7. d

    Address Points Retired

    • catalog.data.gov
    • opendata.dc.gov
    • +5more
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Address Points Retired [Dataset]. https://catalog.data.gov/dataset/address-points-retired
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    City of Washington, DC
    Description

    The dataset contains locations and attributes of retired address points, created as part of the Master Address Repository (MAR) for the Office of the Chief Technology Officer (OCTO) and Department of Buildings (DOB). There are over 40,000 retired addresses. These once existed, but no longer do. More information on the MAR can be found at https://opendata.dc.gov/pages/addressing-in-dc. The data dictionary is available: https://opendata.dc.gov/documents/2a4b3d59aade43188b6d18e3811f4fd3/explore. In the MAR 2, the AddressPt is called ADDRESSES_PT and its features additional useful information such as placement location, created date, last edited date, begin date and more.

  8. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • hub.arcgis.com
    • pacificgeoportal.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://hub.arcgis.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  9. u

    USA Protected Areas (Mature Support)

    • colorado-river-portal.usgs.gov
    Updated Feb 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA Protected Areas (Mature Support) [Dataset]. https://colorado-river-portal.usgs.gov/datasets/13b8c063bb0d4b30a89737605b81b9e2
    Explore at:
    Dataset updated
    Feb 1, 2017
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.In the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the two highest levels of protection GAP Status 1 and 2. These two classes are commonly referred to as protected areas.Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity (GAP Status 1 and 2)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 1, areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management, and GAP Status 2, areas managed for biodiversity where natural disturbance is suppressed. The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  10. DSHS Offices

    • geo.wa.gov
    • hub.arcgis.com
    • +1more
    Updated Mar 6, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WA State Department of Social and Health Services (2018). DSHS Offices [Dataset]. https://geo.wa.gov/datasets/WADSHS::dshs-offices
    Explore at:
    Dataset updated
    Mar 6, 2018
    Dataset provided by
    Washington State Department of Social and Health Services
    Authors
    WA State Department of Social and Health Services
    Area covered
    Description

    Please note: 7/8/2025 this item is deprecated. We soon will announce its retirement here and in the comments / RSS feed below. Information on DSHS office locations can be found here: https://www.dshs.wa.gov/office-locations Washington State Department of Social and Health Services administrative office locations, including which agencies have a presence in the office and whether or not a Community Services Office or Division of Children and Family Services Office is present.Lifecycle status: Production Purpose: enable open access to DSHS data DSHS Data Security: Category 1 - Public Last Update: 3/6/2018 Update Cycle: as needed Data Source: DSHS Important: DSHS reserves the right to alter, suspend, re-host, or retire this service at any time and without notice. This is a map service that you can use in custom web applications and software products. Your use of this map service in these types of tools forms a dependency on the service definition (available fields, layers, etc.). If you form any dependency on this service, be aware of this significant risk to your purposes. You might consider mitigating your risk by extracting the source data and using it to host your own service in an environment under your control. Typically, DSHS Enterprise GIS staff will provide notification of changes via the Comments RSS capability in ArcGIS Online. You may subscribe to the RSS feed that publishes comments to monitor any planned and notified changes.

  11. HYCOM - Ocean Current Vectors (Mature Support)

    • climate.esri.ca
    • uneca.africageoportal.com
    • +5more
    Updated Jun 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). HYCOM - Ocean Current Vectors (Mature Support) [Dataset]. https://climate.esri.ca/datasets/a6f2ca97544b45f69daea38668ccbdcf
    Explore at:
    Dataset updated
    Jun 8, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Earth
    Description

    *** The Global HYCOM Model (GOFS 3.1) was decommissioned on September 4th, 2024; as a result this layer is no longer receiving updates and has been placed in mature support. *** Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. This layer is a a 30-day window from HYCOM, reported in 3-hour time intervals between 08/07/2024 and 09/11/2024; it provides access to the last ~30 days of the HYCOM model before it was retired/decommissioned. This layer does not receive updates.The HYbrid Coordinate Ocean Model (HYCOM) is a product from the HYCOM Consortium that forecasts global ocean conditions. The HYCOM + NCODA Global 1/12° Analysis (GLBy0.08/expt_93.0) provides five variables including Sea Surface Height as well as eastward velocity, northward velocity, in-situ temperature, and salinity at 40 vertical depth levels ranging from 0 m at the ocean surface to 5,000 m.Variable Mapped: Ocean Current VectorsData Projection: GCS WGS84Service Projection: GCS WGS84Extent: GlobalCell Size: 1/12 degree (~9km)Source Type: Vector-MagDirDimension(s):• Time – (regular) 3-hour increments from 08/07/2024 to 09/11/2024 (8 slices per day).• Depth – (irregular) depth increments between 0 and 5,000 m. Slices at depth 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000 m (40 vertical levels) Data Source: HYCOM (glby0pt08/expt-93pt0)Data Accessed Date: September 4, 2024What can you do with this layer?Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time enabled data using the time slider, which is set to three hour intervals by default, by Enabling Time Animation. View the depth enabled data using the depth slider. Switch between processing templates to view the different variables available. This Image Service is designed for full analysis within ArcGIS Pro and ArcMap.

  12. National Water Model (10 Day Anomaly Forecast) (Mature Support)

    • data-napsg.opendata.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +6more
    Updated Aug 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). National Water Model (10 Day Anomaly Forecast) (Mature Support) [Dataset]. https://data-napsg.opendata.arcgis.com/items/51b2bc5d620543b2825c60cc75e9a441
    Explore at:
    Dataset updated
    Aug 24, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The National Water Model (NWM) is a new product from the National Weather Service that forecasts streamflow volume and velocity over the entire continental United States. It is a hydrologic model that predicts the flow in every river reach of the National Hydrography Dataset, mathematically modeling physical processes like snowmelt, infiltration and the movement of water through soil layers in order to determine how much of the NWS precipitation forecast becomes runoff, then routing that runoff through the river network. This is the medium term forecast, which is run once a day, predicting streamflow over the next ten days at three hour intervals. Rivers are symbolized according to how the streamflow differs from the monthly normal.What Can You Do With This Layer?This map service is designed for fast data visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the forecast data sequentially using the time slider, which is set to three hour intervals by default, by Enabling Time Animation. This layer type is not recommended for use in analysis.RevisionsSep 23, 2020: Updated 'qout' field values for Water Bodies. Null values are now being replaced with '-9999' in order to correct an identify issue at small scales. Also updated Pop-Up to reflect that the 'qout' value is Not Available (N/A).Nov 18, 2021: Updated Feature set to v2.1 of the NWM data. Added 'qnormal' field to provide expected monthly flow for given forecast.

  13. National Water Model (Hourly Anomaly Forecast) (Mature Support)

    • disasters.amerigeoss.org
    • prep-response-portal.napsgfoundation.org
    • +9more
    Updated Aug 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). National Water Model (Hourly Anomaly Forecast) (Mature Support) [Dataset]. https://disasters.amerigeoss.org/datasets/esri::national-water-model-hourly-anomaly-forecast-mature-support
    Explore at:
    Dataset updated
    Aug 24, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The National Water Model (NWM) is a new product from the National Weather Service that forecasts streamflow volume and velocity over the entire continental United States. It is a hydrologic model that predicts the flow in every river reach of the National Hydrography Dataset, mathematically modeling physical processes like snowmelt, infiltration and the movement of water through soil layers in order to determine how much of the NWS precipitation forecast becomes runoff, then routing that runoff through the river network. This is the short term forecast, which is run every hour, predicting streamflow over the next eighteen hours at one hour intervals. Rivers are symbolized according to how the streamflow differs from the monthly normal.What Can You Do With This Layer?This map service is designed for fast data visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View forecast data sequentially using the time slider, which is set to one hour intervals by default, by Enabling Time Animation. This layer type is not recommended for use in analysis.RevisionsSep 23, 2020: Updated 'qout' field values for Water Bodies. Null values are now being replaced with '-9999' in order to correct an identify issue at small scales. Also updated Pop-Up to reflect that the 'qout' value is Not Available (N/A).Nov 18, 2021: Updated Feature set to v2.1 of the NWM data. Added 'qnormal' field to provide expected monthly flow for given forecast.

  14. a

    Health Center Service Delivery and Look Alike Sites (Mature Support)

    • hub.arcgis.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2020). Health Center Service Delivery and Look Alike Sites (Mature Support) [Dataset]. https://hub.arcgis.com/datasets/b794a7509b404c94af6d9456f25ee37c
    Explore at:
    Dataset updated
    Aug 20, 2020
    Dataset authored and provided by
    Esri U.S. Federal Datasets
    Area covered
    Description

    Health Center Service Delivery and Look Alike SitesImportant Note: This item is in mature support as of March, 2025 and will be retired in July, 2025. This feature layer, utilizing data from the Health Resources and Services Administration (HRSA), displays all health center program sites in the United States and it's U.S. Territories. Per HRSA, "Health centers combine medical, dental, mental health, substance use, and other services. They focus on the needs of each patient, and they make sure their providers work together to provide the best care."Henry J. Austin Health Center-ChambersData currency: August 1, 2024Data source: Health Center Service Delivery and Look–Alike SitesData modification: NoneFor more information: About the Health Center Program; Health Center Program Look-AlikesSupport documentation: MetadataFor feedback, please contact: ArcGIScomNationalMaps@esri.comHealth Resources and Services AdministrationPer HRSA, "HRSA programs provide equitable health care to people who are geographically isolated and economically or medically vulnerable. This includes programs that deliver health services to people with HIV, pregnant people, mothers and their families, those with low incomes, residents of rural areas, American Indians and Alaska Natives, and those otherwise unable to access high-quality health care."

  15. a

    Retirement Board Meeting Minutes - December 20, 2023

    • hub.arcgis.com
    • opendata.berkspa.gov
    Updated Apr 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Berks (2024). Retirement Board Meeting Minutes - December 20, 2023 [Dataset]. https://hub.arcgis.com/documents/berks::retirement-board-meeting-minutes-december-20-2023?uiVersion=content-views
    Explore at:
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    County of Berks
    Area covered
    Description

    County of Berks - Retirement Board Meeting Minutes

  16. d

    Landing Page

    • datadiscoverystudio.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri, Landing Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/a8058fd2bcd341e480a727971d5ab85f/html
    Explore at:
    Authors
    Esri
    Area covered
    Description

    Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.

  17. f

    ONTARIO TEACHERS PENSION PLAN BOARD reported holdings of GIS from Q3 2013 to...

    • filingexplorer.com
    Updated Mar 31, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FilingExplorer.com; https://filingexplorer.com/ (2015). ONTARIO TEACHERS PENSION PLAN BOARD reported holdings of GIS from Q3 2013 to Q1 2025 [Dataset]. https://www.filingexplorer.com/form13f-holding/370334104?cik=0000937567&period_of_report=2015-03-31
    Explore at:
    Dataset updated
    Mar 31, 2015
    Authors
    FilingExplorer.com; https://filingexplorer.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Historical holdings data showing quarterly positions, market values, shares held, and portfolio percentages for GIS held by ONTARIO TEACHERS PENSION PLAN BOARD from Q3 2013 to Q1 2025

  18. Health Care Spending in the United States

    • hub.arcgis.com
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Health Care Spending in the United States [Dataset]. https://hub.arcgis.com/maps/a35bae20e38b40318ddc7423aee62ab5
    Explore at:
    Dataset updated
    Jun 26, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of June 2023 and will be retired in December 2025. This map shows the average amount spent on health care per household in the U.S. in 2022 in a multiscale map (by country, state, county, ZIP Code, tract, and block group).The pop-up is configured to include the following information for each geography level:Average annual health care spending per householdBreakdown of average annual medical care spending per householdBreakdown of medical services spending per householdPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  19. a

    Aspen Address Retired

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • mapaspen-cityofaspen.opendata.arcgis.com
    • +1more
    Updated Jun 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Aspen GIS AGOL (2019). Aspen Address Retired [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/CityofAspen::aspen-address-retired-1
    Explore at:
    Dataset updated
    Jun 25, 2019
    Dataset authored and provided by
    City of Aspen GIS AGOL
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Addresses that have previously existed in the County, but no longer a recognized address assignment. This reference layer tracks when, where and why an address has changed.

  20. HYCOM - Sea Surface Height Contours (Mature Support)

    • hub.arcgis.com
    Updated Oct 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). HYCOM - Sea Surface Height Contours (Mature Support) [Dataset]. https://hub.arcgis.com/datasets/c452d81b9f2942e386ff91b0ae48280e
    Explore at:
    Dataset updated
    Oct 20, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Earth
    Description

    *** The Global HYCOM Model (GOFS 3.1) was decommissioned on September 4th, 2024; as a result this layer is no longer receiving updates and has been placed in mature support. *** Important Note: This item is in mature support as of November 2024 and will be retired in December 2026. This layer is a a 30-day window from HYCOM, reported in 3-hour time intervals between 08/07/2024 and 09/11/2024; it provides access to the last ~30 days of the HYCOM model before it was retired/decommissioned. This layer does not receive updates.The HYbrid Coordinate Ocean Model (HYCOM) is a product from the HYCOM Consortium that forecasts global ocean conditions. The HYCOM + NCODA Global 1/12° Analysis (GLBy0.08/expt_93.0) provides five variables including Sea Surface Height as well as eastward velocity, northward velocity, in-situ temperature, and salinity at 40 vertical depth levels ranging from 0 m at the ocean surface to 5,000 m.Variable Mapped: Sea Surface Height ContoursData Projection: GCS WGS84Service Projection: GCS WGS84Extent: GlobalCell Size: 1/12 degree (~9km)Source Type: ScientificDimension(s):• Time – (regular) 3-hour increments from 08/07/2024 to 09/11/2024 (8 slices per day).• Depth – (irregular) depth increments between 0 and 5,000 m. Slices at depth 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000 m (40 vertical levels) Data Source: HYCOM (glby0pt08/expt-93pt0)Data Accessed Date: September 4, 2024What can you do with this layer?Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time enabled data using the time slider, which is set to three hour intervals by default, by Enabling Time Animation. View the depth enabled data using the depth slider. Switch between processing templates to view the different variables available. This Image Service is designed for full analysis within ArcGIS Pro and ArcMap.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2018). Actual Evapotranspiration (Mature Support) [Dataset]. https://landwirtschaft-esri-de-content.hub.arcgis.com/datasets/31f7c3727abf42249a43fe8f25470af4
Organization logo

Actual Evapotranspiration (Mature Support)

Explore at:
Dataset updated
Mar 1, 2018
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

Search
Clear search
Close search
Google apps
Main menu