100+ datasets found
  1. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  2. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. a

    02.2 Transforming Data Using Extract, Transform, and Load Processes

    • hub.arcgis.com
    Updated Feb 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.2 Transforming Data Using Extract, Transform, and Load Processes [Dataset]. https://hub.arcgis.com/documents/bcf59a09380b4731923769d3ce6ae3a3
    Explore at:
    Dataset updated
    Feb 18, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To achieve true data interoperability is to eliminate format and data model barriers, allowing you to seamlessly access, convert, and model any data, independent of format. The ArcGIS Data Interoperability extension is based on the powerful data transformation capabilities of the Feature Manipulation Engine (FME), giving you the data you want, when and where you want it.In this course, you will learn how to leverage the ArcGIS Data Interoperability extension within ArcCatalog and ArcMap, enabling you to directly read, translate, and transform spatial data according to your independent needs. In addition to components that allow you to work openly with a multitude of formats, the extension also provides a complex data model solution with a level of control that would otherwise require custom software.After completing this course, you will be able to:Recognize when you need to use the Data Interoperability tool to view or edit your data.Choose and apply the correct method of reading data with the Data Interoperability tool in ArcCatalog and ArcMap.Choose the correct Data Interoperability tool and be able to use it to convert your data between formats.Edit a data model, or schema, using the Spatial ETL tool.Perform any desired transformations on your data's attributes and geometry using the Spatial ETL tool.Verify your data transformations before, after, and during a translation by inspecting your data.Apply best practices when creating a workflow using the Data Interoperability extension.

  4. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  5. Digital Geologic-GIS Map of the Blackcap Mountain 15' Quadrangle, California...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Blackcap Mountain 15' Quadrangle, California (NPS, GRD, GRI, SEKI, BLMO digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Bateman (1965) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-blackcap-mountain-15-quadrangle-california-nps-grd-gri-sek
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Blackcap Mountain, California
    Description

    The Digital Geologic-GIS Map of the Blackcap Mountain 15' Quadrangle, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (blmo_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (blmo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (blmo_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (seki_manz_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (seki_manz_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (blmo_geology_metadata_faq.pdf). Please read the seki_manz_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (blmo_geology_metadata.txt or blmo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. S

    How to Use GIS Open Data Portal

    • data.sanjoseca.gov
    html
    Updated Oct 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enterprise GIS (2020). How to Use GIS Open Data Portal [Dataset]. https://data.sanjoseca.gov/dataset/how-to-use-gis-open-data-portal
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    City of San José
    Authors
    Enterprise GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This page contains the help documentation for the GIS Open Data Portal. Refer to https://gisdata-csj.opendata.arcgis.com/pages/help.

  7. a

    GIS Data Viewer New

    • hub.arcgis.com
    • opendata.co.cumberland.nc.us
    • +1more
    Updated Nov 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cumberland County, NC (2019). GIS Data Viewer New [Dataset]. https://hub.arcgis.com/maps/d203e928181d46658f26fb3b5947921c
    Explore at:
    Dataset updated
    Nov 14, 2019
    Dataset authored and provided by
    Cumberland County, NC
    Area covered
    Description

    The Cumberland County GIS Data Viewer provides the general public with parcel, zoning, hydrology, soils, utilities and topographic data. You can search for a specific address, street name, parcel number (PIN), or by the owner's name.

  8. Median Type TDA

    • gis-fdot.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jul 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2017). Median Type TDA [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/median-type-tda
    Explore at:
    Dataset updated
    Jul 20, 2017
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    The FDOT GIS Roads with Median Types feature class provides spatial information on Florida Median Types distinguishing between lawn, paved, painted, and curbed medians. It also notes where a fence, guardrail, or barrier wall divides the two sides of a divided road. A median is defined as a barrier or other physical separation between two lanes of traffic traveling in opposite directions, which can either be raised, painted, or paved. This information is required for all functionally classified roadways On or Off the SHS. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 05/31/2025.For more details please review the FDOT RCI Handbook Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/median_type.zip

  9. Z

    ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolverton, Steve (2024). ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al. (2019) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2572017
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Gillreath-Brown, Andrew
    Wolverton, Steve
    Nagaoka, Lisa
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)

    **When using the GIS data included in these map packages, please cite all of the following:

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018

    OVERVIEW OF CONTENTS

    This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:

    Raw DEM and Soils data

    Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)

    DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.

    DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.

    Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)

    Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).

    Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).

    ArcGIS Map Packages

    Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).

    Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.

    Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).

    Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).

    For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."

    LICENSES

    Code: MIT year: 2019 Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton

    CONTACT

    Andrew Gillreath-Brown, PhD Candidate, RPA Department of Anthropology, Washington State University andrew.brown1234@gmail.com – Email andrewgillreathbrown.wordpress.com – Web

  10. Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping),...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping), North Carolina (NPS, GRD, GRI, CAHA, AVON_geomorphology digital map) adapted from a North Carolina Geological Survey digital publication map by Hoffman and Shroyer (2007) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-avon-area-1-24000-scale-2007-mapping-north-carolina-nps-
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of the Avon Area (1:24,000 scale 2007 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (avon_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (avon_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (avon_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (avon_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (avon_geomorphology_metadata.txt or avon_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. o

    New Orleans Dataset for ArcGIS

    • explore.openaire.eu
    • zenodo.org
    Updated Oct 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brendan Harmon (2019). New Orleans Dataset for ArcGIS [Dataset]. http://doi.org/10.5281/zenodo.3483791
    Explore at:
    Dataset updated
    Oct 12, 2019
    Authors
    Brendan Harmon
    Area covered
    New Orleans
    Description

    New Orleans Dataset for ArcGIS This geodatabase contains citywide raster and vector data for New Orleans, Louisiana, USA in the North American Datum of 1983 (NAD 83) / Louisiana South State Plane Feet with EPSG code 3452. Unzip the archive and open in ArcGIS. Data Sources U.S. Army Corps of Engineers 2012 Lidar Survey of New Orleans New Orleans Open Data License This dataset is licensed under the ODC Public Domain Dedication and License 1.0 (PDDL) by Brendan Harmon.

  12. GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  13. a

    Aurora Water GIS Data Request Form

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Aurora, Colorado Maps (2024). Aurora Water GIS Data Request Form [Dataset]. https://hub.arcgis.com/documents/e0fc3c42d0854027917177ca3f021fac
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset authored and provided by
    City of Aurora, Colorado Maps
    Description

    Please fill out the linked form for any Water GIS data requests.We will provide the requested information for any potable, raw, or reclaimed water utilities in the defined area, in the form of shapefiles and kmz, once a data agreement has been received.For stormwater and wastewater infrastructure, please see our Open Data website: Storm GIS layers Waste GIS layers Stormwater and Wastewater overview map (this map also shows hydrant locations)For civil plans, please see our Property Information Maps. Information on how to utilize this map to access plan sets can be found here.If you are looking for older as-builts and plans not available through the Property Information Map, please contact waterengineering@auroragov.org.

  14. a

    Data from: Google Earth Engine (GEE)

    • hub.arcgis.com
    • data.amerigeoss.org
    • +5more
    Updated Nov 28, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://hub.arcgis.com/items/bb1b131beda24006881d1ab019205277
    Explore at:
    Dataset updated
    Nov 28, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  15. Socioeconomic impacts GIS and Coverage Data - Dataset - NFWF Coastal...

    • resiliencedata.nfwf.org
    Updated Nov 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    resiliencedata.nfwf.org (2020). Socioeconomic impacts GIS and Coverage Data - Dataset - NFWF Coastal Resilience Open Data Platform [Dataset]. https://resiliencedata.nfwf.org/dataset/grant-55013-gis-coverage-data
    Explore at:
    Dataset updated
    Nov 5, 2020
    Dataset provided by
    National Fish and Wildlife Foundationhttp://www.nfwf.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes mapping data to track the socio-economic metrics associated with a number of projects funded through the Hurricane Sandy Coastal Resiliency Program. Project locations are found in Delaware, Massachusetts, New Jersey, Maryland, and New York. Data was collected from 2017 to 2020. The map data shows agricultural and cropland data, the area of influence at each site, the flooded areas around project sites, area with reduced flood depth because of the project, buildings and their position above and below water, concentrated animal feeding operations, emergency facilities, schools, correction facilities, natural gas processing plants, waste treatment plants, transportation data including data came from a variety of sources, including railways and roads, and watersheds. Data sources include the Department of Homeland Society, U.S. Census Bureau, Pipeline and Hazardous Materials Safety Administration, and U.S. Government open data.

  16. ESI GIS Data and PDF Maps: Environmental Sensitivity Index including GIS...

    • fisheries.noaa.gov
    • datadiscoverystudio.org
    • +2more
    Updated Jan 1, 1984
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Response and Restoration (1984). ESI GIS Data and PDF Maps: Environmental Sensitivity Index including GIS Data and Maps (for the U.S. Shorelines, including Alaska, Hawaii, and Puerto Rico) [Dataset]. https://www.fisheries.noaa.gov/inport/item/40691
    Explore at:
    shapefile, pdf - adobe portable document formatAvailable download formats
    Dataset updated
    Jan 1, 1984
    Dataset provided by
    Office of Response and Restoration
    Time period covered
    1984 - 2007
    Area covered
    United States, Puerto Rican shoreline, Golfo de Fonseca (Honduras and Nicaragua), American Samoa,
    Description

    Environmental Sensitivity Index (ESI) maps are an integral component in oil-spill contingency planning and assessment. They serve as a source of information in the event of an oil spill incident. ESI maps are a product of the Hazardous Materials Response Division of the Office of Response and Restoration (OR&R).ESI maps contain three types of information: shoreline habitats (classified accordin...

  17. d

    PLACES: Place Data (GIS Friendly Format), 2024 release

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Place Data (GIS Friendly Format), 2024 release [Dataset]. https://catalog.data.gov/dataset/places-place-data-gis-friendly-format-2020-release-4a44e
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  18. PLACES: Census Tract Data (GIS Friendly Format), 2024 release

    • healthdata.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). PLACES: Census Tract Data (GIS Friendly Format), 2024 release [Dataset]. https://healthdata.gov/dataset/PLACES-Census-Tract-Data-GIS-Friendly-Format-2024-/4efd-4ue6
    Explore at:
    csv, application/rssxml, application/rdfxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    data.cdc.gov
    Description

    This dataset contains model-based census tract level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census tract 2022 boundary file in a GIS system to produce maps for 40 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  19. California High Hazard Zones (Tier 1)

    • gis.data.cnra.ca.gov
    • data.ca.gov
    • +7more
    Updated Jun 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Forestry and Fire Protection (2017). California High Hazard Zones (Tier 1) [Dataset]. https://gis.data.cnra.ca.gov/datasets/CALFIRE-Forestry::california-high-hazard-zones-tier-1
    Explore at:
    Dataset updated
    Jun 13, 2017
    Dataset authored and provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    Description

    On October 30, 2015 Governor Brown issued an emergency declaration requiring public agencies to identify areas of tree mortality that hold the greatest potential to result in wildfire and/or falling trees and threaten people and property in these areas. Once identified, these areas will be prioritized for removal of dead and dying trees that present a threat to public safety. Tier One High Hazard Zones are areas where assets to be protected and tree mortality directly coincide. These are the areas designated by state and local governments as being in greatest need of dead tree removal, pursuant to the California Governor's Emergency proclamation on October 30, 2015. These areas are considered as having the highest potential of being a safety issue to people, buildings and infrastructure. Dead trees heighten wildfire risk and can be hazardous if they fall.This service represents the latest official release of HHZ. It will be updated annually when a new version is released. As of June 2019, it represents HighHazardZones19_1.

  20. a

    SPU DWW Mainline Points

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +2more
    Updated Oct 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). SPU DWW Mainline Points [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/maps/061f0b30317a4e1587881ad8319e9beb
    Explore at:
    Dataset updated
    Oct 5, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    SPU DWW Mainline Points is a Group Layer containing all Lifecycles, Ownerships, and other variations of Drainage and Wastewater Mainlines Points.Proposed Mainline End Points are planned but not yet installed or as-built.SPU DWW Aba Rem Mainline End Points refers to Abandoned and Removed Mainline End Points.Force Mainline End Points are Mainline End Points under pressure. Detention Lines and Polygons refer to Mainline End Points for Detention Infrastructure.DWW Mainline Connection Points Wyes refer to side sewer and lateral connection points on mainlines.The data is refreshed weekly and is maintained by the SPU GIS Data Maintenance Team.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
Organization logo

Data from: Switching to ArcGIS Pro from ArcMap

Related Article
Explore at:
Dataset updated
Aug 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

Search
Clear search
Close search
Google apps
Main menu