33 datasets found
  1. Imhof style for ArcGIS Pro

    • hub.arcgis.com
    Updated Aug 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2018). Imhof style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/1f25b31793cd4e7391b0cd51b9b79783
    Explore at:
    Dataset updated
    Aug 28, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson

  2. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • pacificgeoportal.com
    • geoportal-pacificcore.hub.arcgis.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  3. a

    3D People ArcGIS Pro Style

    • sea-level-rise-esrioceans.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). 3D People ArcGIS Pro Style [Dataset]. https://sea-level-rise-esrioceans.hub.arcgis.com/content/5d79e5ace56d4aaaba1dbf9176b5effc
    Explore at:
    Dataset updated
    Jun 6, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    A style containing 34 assorted 3D people models for use in large-scale visualizations, providing vertical context.To Match Layer Symbology to Style in ArcGIS Pro, populate a person_type text field to match the values shown below. Next, copy these values to a table, then join the height value(s) to the people points for use in pop-ups or charts. person_type name height_m height_feet height_inches

    Man 1 Gerald 1.7899 5 10.47

    Man 2 Ethan 1.8879 6 2.33

    Man 3 Cliff 1.7015 5 6.99

    Man 4 Dustin 1.7965 5 10.73

    Man 5 Jorge 1.8787 6 1.96

    Man 6 Phillip 1.6752 5 5.95

    Man 7 Dmitri 1.71 5 7.32

    Man 8 Luke 1.793 5 10.59

    Man 9 Carlos 1.7028 5 7.04

    Man 10 Jimmy 1.7625 5 9.39

    Man 11 Helmut 1.8331 6 0.17

    Man 12 Guy 1.812 5 11.34

    Man 13 Leon 1.8219 5 11.73

    Man 14 Matthias 1.753 5 9.02

    Man 15 Kendrick 1.8787 6 1.96

    Man 16 Seth 1.8272 5 11.94

    Man 17 Gomer 1.8982 6 2.73

    Man 18 Robert 1.7853 5 10.29

    Man 19 Jack 1.779 5 10.04

    Man 20 Andy 1.8794 6 1.99

    Man 21 Hamish 1.67 5 5.75

    Man 22 Felix 1.86 6 1.23

    Man 23 Adrian 1.75 5 8.90

    Woman 1 Greta 1.5371 5 0.52

    Woman 2 Simone 1.6366 5 4.43

    Woman 3 Alison 1.679 5 6.10

    Woman 4 Felicia 1.7433 5 8.63

    Woman 5 Jessica 1.7322 5 8.20

    Woman 6 Claire 1.6405 5 4.59

    Woman 7 Maude 1.7795 5 10.06

    Woman 8 Jenny 1.659 5 5.31

    Woman 9 Diane 1.67 5 5.75

    Woman 10 Carla 1.75 5 8.90

    Woman 11 Lauren 1.69 5 6.54

  4. USDA Census of Agriculture 2017 - Corn Production

    • resilience.climate.gov
    • ars-geolibrary-usdaars.hub.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Corn Production [Dataset]. https://resilience.climate.gov/datasets/c8c33e7a32b24f84adfea843d20eb2bf
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes corn production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Corn ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Operations with SalesSales in US DollarsGrain - Area Harvested in AcresGrain - Operations with Area HarvestedGrain - Production in BushelsGrain - Irrigated Area Harvested in AcresGrain - Operations with Irrigated Area HarvestedSilage - Area Harvested in AcresSilage - Operations with Area HarvestedSilage - Production in TonsSilage - Irrigated Area Harvested in AcresSilage - Operations with Area HarvestedTraditional or Indian - Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedTraditional or Indian - Production in PoundsTraditional or Indian - Irrigated Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  5. USDA Census of Agriculture 2017 - Sales and Equipment

    • ars-geolibrary-usdaars.hub.arcgis.com
    • resilience.climate.gov
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Sales and Equipment [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/datasets/esri::usda-census-of-agriculture-2017-sales-and-equipment
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes farm and ranch sales plus the number and value of machines and trucks owned by operators from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: Farm and Ranch Sales, Machinery and Truck inventory and ValueCoordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Number of Operations - AnimalsSales in US Dollars - AnimalsNumber of Operations - CropsSales in US Dollars - CropsTotal Value in US Dollars - MachineryTractors - InventoryTrucks Including Pickups - InventoryAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  6. USA Aquifers

    • hub.arcgis.com
    • colorado-river-portal.usgs.gov
    • +1more
    Updated Feb 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Aquifers [Dataset]. https://hub.arcgis.com/datasets/e049a24713bf4377aa9e8f268f960af4
    Explore at:
    Dataset updated
    Feb 28, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Aquifers are underground layers of gravel, sand, or permeable rock that contain ground water. This water can be extracted using a well and provides an important source of water in many regions of the world.This layer, produced as part of the Ground Water Atlas of the United States, provides access to the areal extent of the principal aquifers of the United States. In areas where multiple aquifers exist at different depths below the surface only the shallowest aquifer is included.This layer does not display all areas where ground water exists. The U.S. Geologic Survey (USGS) mapped these aquifers by interpreting surface features and aquifers may extend beyond these features. Ground water areas along watercourses and ground water in unconsolidated glacial sand and gravel deposits are not included in this layer. Data on these areas are provided in the layer Aquifers of Alluvial and Glacial Origin from the USGS.Dataset SummaryPhenomenon Mapped: Aquifers of the United StatesCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Hawaii, Puerto Rico, and the U.S. Virgin IslandsVisible Scale: All ScalesSource: Groundwater Atlas of the United StatesPublication Date: October 1, 2003Please note: "This dataset, published in 2003, contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons. The map layer was developed as part of the effort to produce the maps published at 1:2,500,000 in the printed series Ground Water Atlas of the United States. The published maps contain base and cultural features not included in these data. Please note that the maps do not show the entire extent of an aquifer, only its subcrop or outcrop area. Refer to the metadata for a complete description of the files and how they were generated." (Source USGS)What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  7. a

    USDA Census of Agriculture 2017 - Cotton Production

    • ars-geolibrary-usdaars.hub.arcgis.com
    • resilience.climate.gov
    • +1more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Cotton Production [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/items/1462b2f8a2944a25ba04a81739202dba
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cotton production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cotton ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BalesSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  8. USDA Census of Agriculture 2017 - Wheat Production

    • resilience.climate.gov
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Wheat Production [Dataset]. https://resilience.climate.gov/datasets/070ce5f4390c4be4b077ab88820052a7
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes wheat production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Wheat ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BushelsSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  9. USDA Census of Agriculture 2017 - Soybean Production

    • resilience.climate.gov
    • ars-geolibrary-usdaars.hub.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Soybean Production [Dataset]. https://resilience.climate.gov/datasets/f59235b3e9714665a938f1089eed843b
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes soybean production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Soybean ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BushelsSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  10. USDA Census of Agriculture 2017 - Hog Production

    • resilience.climate.gov
    • ars-geolibrary-usdaars.hub.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Census of Agriculture 2017 - Hog Production [Dataset]. https://resilience.climate.gov/datasets/57f358c3c13e425cbc6c0a854bb3cdeb
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes hog production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Hog ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.InventoryOperations with InventoryOperations with SalesSales in US DollarsSales in HeadAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  11. c

    USDA Census of Agriculture 2017 - Cattle Production

    • resilience.climate.gov
    • ars-geolibrary-usdaars.hub.arcgis.com
    • +1more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Cattle Production [Dataset]. https://resilience.climate.gov/datasets/esri::usda-census-of-agriculture-2017-cattle-production
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cattle production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cattle ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Cattle - Operations with SalesCattle - Sales in US DollarsCattle - Sales in HeadDairy - Operations with SalesDairy - Sales in US DollarsAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  12. World Hillshade

    • africageoportal.com
    • rwanda.africageoportal.com
    • +3more
    Updated Apr 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). World Hillshade [Dataset]. https://www.africageoportal.com/maps/90dd6371b5ba4685aaf8c94abcca099e
    Explore at:
    Dataset updated
    Apr 8, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    South Pacific Ocean, Pacific Ocean
    Description

    This vector layer provides a detailed shaded relief basemap. The map is designed to be used as a backdrop for topographical, soil, hydro, landcover or other outdoor recreational maps. The layer currently includes hillshade to the largest map scales globally (Greenland coverage to ~1:72K). This hillshade is included in the Outdoor and World Topographic Map (with Contours and Hillshade) tile layers.Use this MapYou can add this layer to a web map and save as your own map. You can also combine this layer's JSON with the JSON of another vector tile layer. This is presented as a multisource tile layer that can be viewed in Map Viewer, or the latest versions of ArcGIS Pro or Runtime.

  13. USDA Census of Agriculture 2017 - Winter Wheat Production

    • resilience.climate.gov
    • resilience-and-adaptation-information-portal-nationalclimate.hub.arcgis.com
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Winter Wheat Production [Dataset]. https://resilience.climate.gov/datasets/667b9dc5f4814b1abe98b07fb5d86b44
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes winter wheat production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Winter Wheat ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedProduction in BushelsIrrigated Area Harvested in AcresAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Additional information on wheat from the Census of Agriculture is available in the USDA Census of Agriculture 2017 - Wheat Production layer.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  14. d

    Connecticut State Parcel Layer 2023

    • catalog.data.gov
    • data.ct.gov
    • +4more
    Updated Feb 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2025). Connecticut State Parcel Layer 2023 [Dataset]. https://catalog.data.gov/dataset/connecticut-state-parcel-layer-2023-74a65
    Explore at:
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    State of Connecticut
    Area covered
    Connecticut
    Description

    The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2023 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 12/08/2023 from data collected in 2022-2023. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.CAMA Notes:The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.CAMA was provided by the towns.Canaan parcels are viewable, but no additional information is available since no CAMA data was submitted.Spatial Data Notes:Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,247,506 parcels.No alteration has been made to the spatial geometry of the data.Fields that are associated with CAMA data were provided by towns.The data fields that have information from the CAMA were sourced from the towns’ CAMA data.If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.Linking fields were renamed to "Link".All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.Field names for town (Muni, Municipality) were renamed to "Town Name".

  15. c

    USDA Census of Agriculture 2017 - Dairy Production

    • resilience.climate.gov
    Updated Jan 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). USDA Census of Agriculture 2017 - Dairy Production [Dataset]. https://resilience.climate.gov/datasets/esri::usda-census-of-agriculture-2017-dairy-production
    Explore at:
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes dairy production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Dairy ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Cattle - Operations with SalesCattle - Sales in US DollarsCattle - Sales in HeadDairy - Operations with SalesDairy - Sales in US DollarsAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  16. USDA Census of Agriculture 2017 - Federal Payments

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • resilience.climate.gov
    • +1more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Federal Payments [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/esri::usda-census-of-agriculture-2017-federal-payments
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes payments made to producers by the Federal government from the 2017 Census of Agriculture at the county level. This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online.Dataset SummaryPhenomenon Mapped: Payments made to producers by the Federal government Coordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Federal Payments - Operations with ReceiptsFederal Payments - Receipts in US DollarsFederal Payments - Receipts in US Dollars per OperationFederal Payments not Including Conservation and Wetland Programs - Operations with ReceiptsFederal Payments not Including Conservation and Wetland Programs - Receipts in US DollarsFederal Payments not Including Conservation and Wetland Programs - Receipts in US Dollars per OperationFederal Payments for Conservation and Wetland Programs - Operations with ReceiptsFederal Payments for Conservation and Wetland Programs - Receipts in US DollarsFederal Payments for Conservation and Wetland Programs - Receipts in US Dollars per OperationConservation and wetland programs include:Conservation Reserve Program (CRP)Wetlands Reserve Program (WRP)Farmable Wetlands Program (FWP)Conservation Reserve Enhancement Program (CREP)Other programs with payments to producers include:2014 Agricultural Act (Farm Bill)Agriculture Risk Coverage (ARC)Price Loss Coverage (PLC)Commodity Credit Corporation (CCC)Loan Deficiency PaymentsDisaster Assistance ProgramsState and local government agricultural program payments and Federal crop insurance payments are not included.Additionally, attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  17. m

    MV Parcels Joined to Assess Table pv

    • gis.data.mass.gov
    • data-dukescountygis.opendata.arcgis.com
    • +1more
    Updated Sep 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dukes County, MA GIS (2021). MV Parcels Joined to Assess Table pv [Dataset]. https://gis.data.mass.gov/maps/Dukescountygis::mv-parcels-joined-to-assess-table-pv
    Explore at:
    Dataset updated
    Sep 28, 2021
    Dataset authored and provided by
    Dukes County, MA GIS
    Area covered
    Description

    In ArcGIS OnLine an active join (one to many) was created between each town's parcel bounds and related assess table. In ArcPro those 6 joined layers were merged together into one feature layer. This file provides faster response time in web apps that permit filtering the data. The properties of the layer are set in such a way that the boundaries will not appear on the map until zoomed in.Please note: Any building related information associated with the parcel may or may not represent ALL buildings on the parcel.All parcel data meets the MassGIS Level 3 Parcel data standard. Each town has a parcel data consultant (either CAI Technologies or CGIS) who compiles their parcel bounds and export assessing data. All users are encouraged to read the 'attribute' section of the MassGIS metadata so there is clear understanding as to what these data represent.

  18. a

    Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • hub.arcgis.com
    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • +1more
    Updated May 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://hub.arcgis.com/maps/NMCDC::sentinel-2-10m-land-use-land-cover-change-from-2018-to-2021/about
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  19. c

    Connecticut CAMA and Parcel Layer

    • geodata.ct.gov
    • hub.arcgis.com
    Updated Nov 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2024). Connecticut CAMA and Parcel Layer [Dataset]. https://geodata.ct.gov/datasets/ctmaps::connecticut-cama-and-parcel-layer
    Explore at:
    Dataset updated
    Nov 20, 2024
    Dataset authored and provided by
    State of Connecticut
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Coordinate system Update:Notably, this dataset will be provided in NAD 83 Connecticut State Plane (2011) (EPSG 6434) projection, instead of WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857) which is the coordinate system of the 2023 dataset and will remain in Connecticut State Plane moving forward.Ownership Suppression and Data Access:The updated dataset now includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name will be replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with suppressed ownership data, users should be aware that there was no "Suppression" field in the submission to verify specific details. This measure was implemented this year to help verify compliance with Suppression.New Data Fields:The new dataset introduces the "Land Acres" field, which will display the total acreage for each parcel. This additional field allows for more detailed analysis and better supports planning, zoning, and property valuation tasks. An important new addition is the FIPS code field, which provides the Federal Information Processing Standards (FIPS) code for each parcel’s corresponding block. This allows users to easily identify which block the parcel is in.Updated Service URL:The new parcel service URL includes all the updates mentioned above, such as the improved coordinate system, new data fields, and additional geospatial information. Users are strongly encouraged to transition to the new service as soon as possible to ensure that their workflows remain uninterrupted. The URL for this service will remain persistent moving forward. Once you have transitioned to the new service, the URL will remain constant, ensuring long term stability.For a limited time, the old service will continue to be available, but it will eventually be retired. Users should plan to switch to the new service well before this cutoff to avoid any disruptions in data access.The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2024 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 10/31/2024 from data collected in 2023-2024. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.CAMA Notes:The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.CAMA was provided by the towns.Spatial Data Notes:Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,290,196 parcels.No alteration has been made to the spatial geometry of the data.Fields that are associated with CAMA data were provided by towns.The data fields that have information from the CAMA were sourced from the towns’ CAMA data.If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.Linking fields were renamed to "Link".All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.Field names for town (Muni, Municipality) were renamed to "Town Name".The attributes included in the data: Town Name OwnerCo-OwnerLinkEditorEdit DateCollection year – year the parcels were submittedLocationMailing AddressMailing CityMailing StateAssessed TotalAssessed LandAssessed BuildingPre-Year Assessed Total Appraised LandAppraised BuildingAppraised OutbuildingConditionModelValuationZoneState UseState Use DescriptionLand Acre Living AreaEffective AreaTotal roomsNumber of bedroomsNumber of BathsNumber of Half-BathsSale PriceSale DateQualifiedOccupancyPrior Sale PricePrior Sale DatePrior Book and PagePlanning RegionFIPS Code *Please note that not all parcels have a link to a CAMA entry.*If any discrepancies are discovered within the data, whether pertaining to geographical inaccuracies or attribute inaccuracy, please directly contact the respective municipalities to request any necessary amendmentsAdditional information about the specifics of data availability and compliance will be coming soon.If you need a WFS service for use in specific applications : Please Click Here

  20. ACS Median Household Income Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Styles (2018). Imhof style for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/1f25b31793cd4e7391b0cd51b9b79783
Organization logo

Imhof style for ArcGIS Pro

Explore at:
Dataset updated
Aug 28, 2018
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Styles
Description

Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson

Search
Clear search
Close search
Google apps
Main menu