16 datasets found
  1. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  2. Alternative outputs based on primary model (packaged datasets) - A landscape...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Alternative outputs based on primary model (packaged datasets) - A landscape connectivity analysis for the coastal marten (Martes caurina humboldtensis) [Dataset]. https://catalog.data.gov/dataset/alternative-outputs-based-on-primary-model-packaged-datasets-a-landscape-connectivity-anal
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    This packaged data collection contains two sets of two additional model runs that used the same inputs and parameters as our primary model, with the exception being we implemented a "maximum corridor length" constraint that allowed us to identify and visualize the corridors as being well-connected (≤15km) or moderately connected (≤45km). This is based on an assumption that corridors longer than 45km are too long to sufficiently accommodate dispersal. One of these sets is based on a maximum corridor length that uses Euclidean (straight-line) distance, while the other set is based on a maximum corridor length that uses cost-weighted distance. These two sets of corridors can be compared against the full set of corridors from our primary model to identify the remaining corridors, which could be considered poorly connected. This package includes the following data layers: Corridors classified as well connected (≤15km) based on Cost-weighted Distance Corridors classified as moderately connected (≤45km) based on Cost-weighted Distance Corridors classified as well connected (≤15km) based on Euclidean Distance Corridors classified as moderately connected (≤45km) based on Euclidean Distance Please refer to the embedded metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in raster GeoTIFF (.tif) format.

  3. Primary model outputs (packaged datasets) - A landscape connectivity...

    • catalog.data.gov
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Primary model outputs (packaged datasets) - A landscape connectivity analysis for the coastal marten (Martes caurina humboldtensis) [Dataset]. https://catalog.data.gov/dataset/primary-model-outputs-packaged-datasets-a-landscape-connectivity-analysis-for-the-coastal-
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    This packaged data collection contains all of the outputs from our primary model, including the following data layers: Habitat Cores (vector polygons) Least-cost Paths (vector lines) Least-cost Corridors (raster) Least-cost Corridors (vector polygon interpretation) Modeling Extent (vector polygon) Please refer to the embedded spatial metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in shapefile (.shp) or raster GeoTIFF (.tif) formats.

  4. r

    Add GTFS to a Network Dataset

    • opendata.rcmrd.org
    Updated Jun 27, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Add GTFS to a Network Dataset [Dataset]. https://opendata.rcmrd.org/content/0fa52a75d9ba4abcad6b88bb6285fae1
    Explore at:
    Dataset updated
    Jun 27, 2013
    Dataset authored and provided by
    ArcGIS for Transportation Analytics
    Description

    Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum

  5. Visualize A Space Time Cube in 3D

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • hub.arcgis.com
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society for Conservation GIS (2020). Visualize A Space Time Cube in 3D [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/acddde8dae114381889b436fa0ff4b2f
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset authored and provided by
    Society for Conservation GIShttp://www.scgis.org/
    Description

    Stamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner

  6. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    geojson, csv, kml, esri rest, html, zipAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  7. a

    USNG Map Book Template for ArcGIS Pro

    • hub.arcgis.com
    • gis-fema.hub.arcgis.com
    Updated May 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). USNG Map Book Template for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/f93ebd6933cb4679a62ce4f71a2a9615
    Explore at:
    Dataset updated
    May 25, 2018
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contents: This is an ArcGIS Pro zip file that you can download and use for creating map books based on United States National Grid (USNG). It contains a geodatabase, layouts, and tasks designed to teach you how to create a basic map book.Version 1.0.0 Uploaded on May 24th and created with ArcGIS Pro 2.1.3 - Please see the README below before getting started!Updated to 1.1.0 on August 20thUpdated to 1.2.0 on September 7thUpdated to 2.0.0 on October 12thUpdate to 2.1.0 on December 29thBack to 1.2.0 due to breaking changes in the templateBack to 1.0.0 due to breaking changes in the template as of June 11th 2019Updated to 2.1.1 on October 8th 2019Audience: GIS Professionals and new users of ArcGIS Pro who support Public Safety agencies with map books. If you are looking for apps that can be used by any public safety professional, see the USNG Lookup Viewer.Purpose: To teach you how to make a map book with critical infrastructure and a basemap, based on USNG. You NEED to follow the steps in the task and not try to take shortcuts the first time you use this task in order to receive the full benefits. Background: This ArcGIS Pro template is meant to be a starting point for your map book projects and is based on best practices by the USNG National Implementation Center (TUNIC) at Delta State University and is hosted by the NAPSG Foundation. This does not replace previous templates created in ArcMap, but is a new experimental approach to making map books. We will continue to refine this template and work with other organizations to make improvements over time. So please send us your feedback admin@publicsafetygis.org and comments below. Instructions: Download the zip file by clicking on the thumbnail or the Download button.Unzip the file to an appropriate location on your computer (C:\Users\YourUsername\Documents\ArcGIS\Projects is a common location for ArcGIS Pro Projects).Open the USNG Map book Project File (APRX).If the Task is not already open by default, navigate to Catalog > Tasks > and open 'Create a US National Grid Map Book' Follow the instructions! This task will have some automated processes and models that run in the background but you should pay close attention to the instructions so you also learn all of the steps. This will allow you to innovate and customize the template for your own use.FAQsWhat is US National Grid? The US National Grid (USNG) is a point and area reference system that provides for actionable location information in a uniform format. Its use helps achieve consistent situational awareness across all levels of government, disciplines, and threats & hazards – regardless of your role in an incident.One of the key resources NAPSG makes available to support emergency responders is a basic USNG situational awareness application. See the NAPSG Foundation and USNG Center websites for more information.What is an ArcGIS Pro Task? A task is a set of preconfigured steps that guide you and others through a workflow or business process. A task can be used to implement a best-practice workflow, improve the efficiency of a workflow, or create a series of interactive tutorial steps. See "What is a Task?" for more information.Do I need to be proficient in ArcGIS Pro to use this template? We feel that this is a good starting point if you have already taken the ArcGIS Pro QuickStart Tutorials. While the task will automate many steps, you will want to get comfortable with the map layouts and other new features in ArcGIS Pro.Is this template free? This resources is provided at no-cost, but also with no guarantees of quality assurance or support at this time. Can't I just use ArcMap? Ok - here you go. USNG 1:24K Map Template for ArcMapKnown Limitations and BugsZoom To: It appears there may be a bug or limitation with automatically zooming the map to the proper extent, so get comfortable with navigation or zoom to feature via the attribute table.FGDC Compliance: We are seeking feedback from experts in the field to make sure that this meets minimum requirements. At this point in time we do not claim to have any official endorsement of standardization. File Size: Highly detailed basemaps can really add up and contribute to your overall file size, especially over a large area / many pages. Consider making a simple "Basemap" of street centerlines and building footprints.We will do the best we can to address limitations and are very open to feedback!

  8. n

    Tall, heterogenous forests improve prey capture, delivery to nestlings, and...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Dec 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zachary Wilkinson; H. Anu Kramer; Gavin Jones; Ceeanna Zulla; Kate McGinn; Josh Barry; Sarah Sawyer; Richard Tanner; R. J. Gutiérrez; John Keane; M. Zachariah Peery (2022). Tall, heterogenous forests improve prey capture, delivery to nestlings, and reproductive success for Spotted Owls in southern California [Dataset]. http://doi.org/10.5061/dryad.h70rxwdnq
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 12, 2022
    Dataset provided by
    University of Minnesota
    Rocky Mountain Research Station
    University of Wisconsin–Madison
    US Forest Service
    Tanner environmental services
    Authors
    Zachary Wilkinson; H. Anu Kramer; Gavin Jones; Ceeanna Zulla; Kate McGinn; Josh Barry; Sarah Sawyer; Richard Tanner; R. J. Gutiérrez; John Keane; M. Zachariah Peery
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Southern California, California
    Description

    Predator-prey interactions can be profoundly influenced by vegetation conditions, particularly when predator and prey prefer different habitats. Although such interactions have proven challenging to study for small and cryptic predators, recent methodological advances substantially improve opportunities for understanding how vegetation influences prey acquisition and strengthen conservation planning for this group. The California Spotted Owl (Strix occidentalis occidentalis) is well-known as an old-forest species of conservation concern, but whose primary prey in many regions – woodrats (Neotoma spp.) – occurs in a broad range of vegetation conditions. Here, we used high-resolution GPS tracking coupled with nest video monitoring to test the hypothesis that prey capture rates vary as a function of vegetation structure and heterogeneity, with emergent, reproductive consequences for Spotted Owls in Southern California. Foraging owls were more successful capturing prey, including woodrats, in taller multilayered forests, in areas with higher heterogeneity in vegetation types, and near forest-chaparral edges. Consistent with these findings, Spotted Owls delivered prey items more frequently to nests in territories with greater heterogeneity in vegetation types and delivered prey biomass at a higher rate in territories with more forest-chaparral edge. Spotted Owls had higher reproductive success in territories with higher mean canopy cover, taller trees, and more shrubby vegetation. Collectively, our results provide additional and compelling evidence that a mosaic of large tree forests with complex canopy and shrubby vegetation increases access to prey with potential reproductive benefits to Spotted Owls in landscapes where woodrats are a primary prey item. We suggest that forest management activities that enhance forest structure and vegetation heterogeneity could help curb declining Spotted Owl populations while promoting resilient ecosystems in some regions. Methods See README DOCUMENT Naming conventions *RSF or prey refers to prey capture analysis *delivery in a file name refers to delivery rate analysis *repro in a filename means that file is for the delivery rate analysis

    Setup *files with vegetation data should work with minimal alteration(will need to specify working directory) with associated R code for each analysis *Shapefiles were made in ArcGIS pro but they can be opened with any GIS software such as QGIS.

    Locational data files

    NOTE LOCATIONAL DATA IS SHIFTED AND ROTATED FROM THE ORIGINAL -due to the sensitive nature of this species. The locational_data includes: * All_2021_owls_shifted * Point file showing all GPS tag locations for prey capture analysis * Attributes include: * TERRITORY ID: Numerical identifier for each bird * Year: year GPS tag was recorded * Month: month GPS tag was recorded * Day: Day GPS tag was recorded * Hour: Hour GPS tag was recorded * Minute: minute GPS tag was recorded * All_linked_polygons_shifted * Polygon file showing capture polygons for prey capture analysis * Attributes include * Territory ID: numerical identifier for each bird * Polygon id: numerical identifier for each capture polygon for each bird * Shape area: area of each polygon * SBNF_camera_nests_shifted * Point file showing spotted owl nests for prey capture analysis * Attributes include * Territory id: numerical identifier for each bird * C95_KDE_2021_socal_shifted * Polygon file of owls 95% kernel density estimate for prey delivery rate analysis * Attributes include * Id: numerical identifier for each territory(bird) * Area: area of each polygon * San_bernardino_territory_centers * Point file showing Territory centers for historical SBNF territories – shifted for repro success analysis * Attributes include * Repro Territory id: unique identifier for each territory in broader set of territories

    Besides the sifted locational data we have included - For the Resource selection function vegetation data, for the delivery analysis we have included an overview of prey deliveries by territory and vegetation data used, and for the reproductive analysis we have again included vegetation data as well as an overview of reproductive success. these are labled as follows:

    Files for the prey capture analysis

    Socal_RSF_data.txt

    *description: Text file with vegetation data paired with capture locations both buffered polygons used in prey capture analysis and the unbuffered ones which were not used.(Pair with Socal_rsf_code R script) *format: .txt *Dimensions: 2641 X 35

    *Variables: *ORIG_fid: completely unique identifier for each row *unique_id: unique identifier for each capture polygon(shared between a buffered capture location and its unbuffered pair) *territory_id: unique numerical idenifier of territory *Polygon_id: within territory unique prey capture polygon id *buff: bianary buffered or unbuffered (1=buffered, 0=unbuffered) *used: bianary used=1 available=0 *prey_type: prey species associated with polygon unkn:unknown, flsq:flying squirel, wora:woodrat, umou:mouse, pogo:pocketgopher, grsq: grey squirel, ubrd: unknown bird, umol:unknown mole, uvol, unknown vole. *area_sqm: area of polygon in square meters *CanCov_2020_buff: average canopy cover in polygon *CanHeight_2020_buff: average canopy height in polygon *Canlayer_2020_buff: average number of canopy layers in polygon *Understory_density_2020_buff: average brushy vegetation density in polygon *pix_COUNT: count of pixels in polygon (not needed for analysis) *p_chaparral: percent of polygon comprised of chaparral habitat
    *p_conifer: percent of polygon comprised of conifer habitat *p_hardwood: percent of polygon comprised of hardwood habitat *p_other: percent of polygon comprised of other habitat types *Calveg_cap_CHt_gt10_CC_30to70_intersect_buff: percent of polygon comprised of trees taller than 10m with 30-70percent canopy cover (used to check data) *Calveg_cap_CHt_gt10_CCgt70_intersect_buff: percent of polygon comprised of trees taller than 10m with greater than 70percent canopy cover (used to check data) *Calveg_cap_CHt_lt10_intersect_buff:percent of polygon comprised of trees less than 10m (used to check data)
    *p_sm_conifer: percent of polygon comprised of conifer trees less than 10m (used to calculate diversity)
    *p_lrg_conifer_sc: percent of polygon comprised of conifer forests >10m tall with sparse canopy(used to calculate diversity) *p_large_conifer_dc: percent of polygon comprised of conifer forests greater than 10m tall with dense canopy (used to calculate diversity) *p_sm_hard: percent of polygon comprised of hardwood trees less than 10m (used to calculate diversity) *p_lrg_hard_sc: percent of polygon comprised of hardwood forests greater than 10m with sparse canopy(used to calculate diversity)
    *p_lrg_hard_dc: percent of polygon comprised of hardwood forests greater than 10m dense canopy (used to calculate diversity) *p_forests_gt10_verysparse_CC: percent of polygon comprised of trees less than 10m with very sparse canopies (used to calculate diversity) *primary_edge: total distance in meters of primary edge in a polygon
    *normalized_by_area_primary_edge: total distance in m of primary edge in a polygon divided by the area of the polygon
    *secondary_edge: total distance in meters of secondary edge in a polygon *normalized_by_area_secondary_edge:total distance in m of secondary edge in a polygon divided by the area of the polygon *coarse_diversity: shannon diversity in each polygon (see methods below) *fine_diversity: shannon diversity in each polygon (see methods below) *nest_distance: distance from polygon center to nest for each polygon in meters

    For the Delivery analysis

    note: For information on determining average prey biomass see methods as well as zulla et al 2022 for flying squirels and woodrat masses Zulla CJ, Jones GM, Kramer HA, Keane JJ, Roberts KN, Dotters BP, Sawyer SC, Whitmore SA, Berigan WJ, Kelly KG, Gutiérrez RJ, Peery MZ. Forest heterogeneity outweighs movement costs by enhancing hunting success and fitness in spotted owls. doi:10.21203/rs.3.rs-1370884/v1. PPR:PPR470028.

    prey_deliveries_byterritory.csv *Description: overview file of prey delivered to each nest *format: .csv *dimensions:332 x 8

    *Variables: *SITE: Unique numerical identifier for each territory *DATE: date prey was delivered (in UTC) *CAMERA TIME: time in UTC prey was delivered *VIDEO TIME: time on video prey was delivered - unrelated to real time just original file
    *PREY ITEM: prey species delivered to nest unkn:unknown, uncr: unknown if delivery(removed from eventual analysis due to

  9. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53906
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand for precise geospatial data across diverse sectors. The market, currently estimated at $2.5 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated value of $7.2 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based solutions and the advancements in artificial intelligence (AI) and machine learning (ML) technologies are enhancing the analytical capabilities and accessibility of remote sensing data. Secondly, the growing need for efficient resource management in agriculture, water conservancy, and forestry is driving the demand for sophisticated software capable of processing and interpreting satellite imagery. Furthermore, governmental initiatives promoting the use of geospatial technologies for infrastructure development and environmental monitoring are contributing to market growth. The open-source software segment is expected to witness significant growth due to its cost-effectiveness and flexibility, while the non-open source segment will maintain its market share driven by its advanced features and dedicated support. Geographic regions such as North America and Europe are currently leading the market, driven by robust technological infrastructure and high adoption rates. However, emerging economies in Asia-Pacific are poised for significant growth owing to increasing investments in infrastructure and technological advancements. Despite the positive outlook, the market faces certain challenges. High initial investment costs for both software and hardware can be a barrier to entry for small and medium-sized enterprises (SMEs). Furthermore, the complexity of remote sensing data analysis and the need for skilled professionals to interpret the results can hinder wider adoption. Data security and privacy concerns, especially concerning sensitive geospatial information, also present hurdles for market expansion. Overcoming these challenges through collaborative partnerships, the development of user-friendly interfaces, and robust data security measures will be crucial for driving continued growth in the satellite remote sensing software market.

  10. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  11. a

    Connecticut 3D Lidar Viewer

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jan 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 8, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Area covered
    Connecticut
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  12. Primary model inputs and intermediaries (packaged datasets) - A landscape...

    • catalog.data.gov
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Primary model inputs and intermediaries (packaged datasets) - A landscape connectivity analysis for the coastal marten (Martes caurina humboldtensis) [Dataset]. https://catalog.data.gov/dataset/primary-model-inputs-and-intermediaries-packaged-datasets-a-landscape-connectivity-analysi
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    This packaged data collection contains the two compiled input surfaces (habitat surface and resistance surface) that were used to derive habitat cores and movement corridors in our primary model. It also includes an intermediary dataset (moving window averages) that was produced by the Core Mapper tool in the process of producing habitat cores, as well as an intermediary dataset (movement cost surface) that was produced by the Linkage Mapper tool in the process of producing least-cost corridors. This package includes the following data layers: Resistance Surface Movement Cost Surface Habitat Surface Moving Window Averages A lookup table of resistance values is also included in this package. This spreadsheet contains a list of component raster data layers that were used to compile our resistance surface, the classes of data represented within each of these rasters, and the resistance value we assigned to each class. Please refer to the embedded metadata and the information in our full report for details on the development of these data layers. Packaged data are available in two formats: Geodatabase (.gdb): A related set of file geodatabase rasters and feature classes, packaged in an ESRI file geodatabase. ArcGIS Pro Map Package (.mpkx): The same data included in the geodatabase, presented as fully-symbolized layers in a map. Note that you must have ArcGIS Pro version 2.0 or greater to view. See Cross-References for links to individual datasets, which can be downloaded in raster GeoTIFF (.tif) format.

  13. n

    Estimating Mountain Lion Habitat Connectivity to Guide Wildlife Conservation...

    • data.niaid.nih.gov
    • knb.ecoinformatics.org
    • +3more
    zip
    Updated May 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikole Vannest; Grace Kumaishi (2022). Estimating Mountain Lion Habitat Connectivity to Guide Wildlife Conservation at The Nature Conservancy’s Jack and Laura Dangermond Preserve; University of California Santa Barbara; 2021-2022. [Dataset]. http://doi.org/10.25349/D9QG8X
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2022
    Dataset provided by
    University of California, Santa Barbara
    Authors
    Nikole Vannest; Grace Kumaishi
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Santa Barbara
    Description

    This submission is from a master's group thesis project at The Bren School of Environmental Science & Management at the University of California, Santa Barbara, and contains the final written report and associated datasets. The graduate student researchers who completed this project include: Meghan Fletcher, Alyssa Kibbe, Grace Kumaishi, Anna Talken, and Nikole Vannest.

    The California landscape has been fragmented by urban development, infrastructure, and agriculture. Maintaining connectivity between areas of wildlife habitat is important for the viability of many long-ranging species, such as the mountain lion (Puma concolor). Mountain lion populations are highly susceptible to habitat fragmentation, and face reduced access to resources and decreased genetic diversity. This study explores the habitat connectivity between the Jack and Laura Dangermond Preserve (JLDP), a 24,460 acre protected property owned by The Nature Conservancy (TNC), and neighboring protected areas to identify potential pathways of movement for mountain lions along the Central and Southern California coast. In this project, we: 1) determine regional connectivity and least cost paths between core habitats by modeling suitable mountain lion habitat, 2) estimate mountain lion habitat use and movement on JLDP by performing a site-level suitability and corridor analysis and 3) create a short film focused on highlighting our research, the role that JLDP plays in conservation, and the importance of habitat connectivity. The results of our project show that JLDP contains suitable habitat for mountain lions and may play a positive role in coastal connectivity. When considering the connectivity between JLDP and other regional protected areas, our analyses indicate that urbanized coastal regions act as barriers to mountain lions and contain pinch points that channelize movement. These results can guide TNC in developing management strategies for protecting mountain lions on JLDP and in the surrounding region.

    Analyses were conducted using ArcGIS, Google Earth Engine, MaxENT, Circuitscape, and Omniscape. The project began in April 2021 and ended in June 2022. Methods Data was collected from open source data acquired using Google Earth Engine and Esri ArcOnline from the following sources: NASA, USGS, JPL-CalTech, Conservation Science Partners, CalFish, US Census and CalFire. It was processed using Esri ArcMap, ArcGIS Pro, Maxent, Omniscape via Jupyter Notebook and the Linkage Mapper Toolkit within ArcMap.

  14. a

    A Guide to Nashville's Neighborhoods, Hutt - Spring 2025

    • cityscapes-projects-gisanddata.hub.arcgis.com
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ehutt3_gtmaps (2025). A Guide to Nashville's Neighborhoods, Hutt - Spring 2025 [Dataset]. https://cityscapes-projects-gisanddata.hub.arcgis.com/items/0eab5a3c119a4b28b89d359960dda175
    Explore at:
    Dataset updated
    Apr 28, 2025
    Dataset authored and provided by
    ehutt3_gtmaps
    Area covered
    Nashville
    Description

    This StoryMap describes the neighborhoods in Nashville and provides information on nearby apartments, restaurants, and points of interest.Nashville is one of the country's fastest growing cities. From music to healthcare, Nashville has seen an abundance of development in recent years. In 2023, 86 residents per day were moving to Nashville, and 18.6 million tourists visited the city [1].The first interactive feature will walk you through 11 neighborhoods found in Nashville. It was created using the “map tour” feature and walks you around a map of Nashville (created by me) while displaying the location and information. The information describes the ambience of each neighborhood as well as what they are known for and who typically lives in the area. All the information was provided by Nashville Guru [2]. Next, the story continues with rent for these locations. The values reflect the costs for studio/one-bedroom apartments. These costs were calculated using the Summary Statistics feature in ArcGIS Pro, which were then plotted in the chart seen in this StoryMap. After displaying the average values, there is a map of the individual apartments’ locations (created by me) with pop-ups showing the building name, starting rent, pool, and website link. This map and its pop-ups were created by me in ArcGIS Pro and then uploaded as a web map into ArcGIS Online. It utilizes an Experience Builder to allow you to filter through and focus on the apartments in each neighborhood. All of the information is available on apartments.com [3]. The next map dictates some restaurants in the area. The original feature layer was created by NNRobbins11 [4]. A spatial query was performed in ArcGIS pro by joining this restaurants layer to neighborhoods within a 1-mile distance. Like the apartments map, a filter is attached so that you may select a neighborhood. This allows you to select a neighborhood and then view the closest restaurants. There is also a pull-up arrow located at the bottom of this experience to allow users to view the pop-ups in table form.Finally, a sidecar is used to show the locations and information about local attractions. The map was created by me in ArcGIS Pro and shows 10 features with a name, description, and image. The description and image are shown in the left sidecar. All of this information is available in Nashville Guru [5]. The final video provides a live look of Nashville from a drone’s perspective [6]. Sources:[1] https://www.govloop.com/community/blog/the-enterprise-tech-driving-nashvilles-historic-growth/[2] https://nashvilleguru.com/neighborhoods[3] https://www.apartments.com/nashville-tn/?msockid=2dcf432ac6f36e722d9956e7c76a6fa7[4] https://services3.arcgis.com/58WV6GqBWodG9Kll/arcgis/rest/services/Nashville_Eateries/FeatureServer[5] https://nashvilleguru.com/[6] https://www.bing.com/videos/riverview/relatedvideo?&q=nashville+birds+eye+video&&mid=2489D5A39FFFCAE7A92B2489D5A39FFFCAE7A92B&&FORM=VRDGAR

  15. USA Flood Hazard Areas

    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • gis-support-utah-em.hub.arcgis.com
    • +3more
    Updated Oct 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Flood Hazard Areas [Dataset]. https://center-for-community-investment-lincolninstitute.hub.arcgis.com/datasets/11955f1b47ec41a3af86650824e0c634
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: December 18, 2024This layer is derived from the December 18, 2024 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 88 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 88 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census' boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel.Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  16. USA SSURGO - Loss Tolerance Factor

    • hub.arcgis.com
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Loss Tolerance Factor [Dataset]. https://hub.arcgis.com/datasets/e059050c2983489a91614e5e4d4d0b35
    Explore at:
    Dataset updated
    Jun 22, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil loss tolerance factor is the maximum rate of soil loss that will permit crop productivity to be sustained economically and indefinitely on a given soil. Soil loss tolerance is rated as 1, 2, 3, 4 or 5 tons per acre per year. The primary use for soil loss tolerance factor is evaluating the effectiveness of erosion control measures on farmland. Soil loss tolerance factor serves as a quantitative standard to compare to erosion rate estimates from models such as the Revised Universal Soil Loss Equation. Farmlands where soil loss tolerance factor is less than modeled erosion rates are considered unsustainable. Dataset SummaryPhenomenon Mapped: Soil loss toleranceUnits: tons/acre/yearCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Projection: Web Mercator Auxiliary SphereSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for soil loss tolerance is derived from the gSSURGO component table field T (tfact). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting AddthenBrowse Living Atlas Layers. A window will open. Type "loss tolerance" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and selectAdd Datafrom the Map Tab. SelectDataat the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expandPortalif necessary, then selectLiving Atlas. Type "loss tolerance" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
Organization logo

Data from: Switching to ArcGIS Pro from ArcMap

Related Article
Explore at:
Dataset updated
Aug 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

Search
Clear search
Close search
Google apps
Main menu