38 datasets found
  1. a

    Automating Workflows Using ArcGIS Pro Tasks

    • hub.arcgis.com
    Updated Dec 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Automating Workflows Using ArcGIS Pro Tasks [Dataset]. https://hub.arcgis.com/documents/e790879743414a749f60f2005db1c5c7
    Explore at:
    Dataset updated
    Dec 29, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    Learn how to produce a standardized, step-by-step workflow that ArcGIS Pro users of all experience levels can efficiently complete.GoalsUnderstand the benefits of tasks.Design and create tasks.Share tasks.

  2. a

    02.1 Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
    Explore at:
    Dataset updated
    Feb 16, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

  3. Getting to Know ArcGIS Pro 2.6

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Getting to Know ArcGIS Pro 2.6 [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/getting-to-know-arcgis-pro-2-6
    Explore at:
    Dataset updated
    Aug 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Continuing the tradition of the best-selling Getting to Know series, Getting to Know ArcGIS Pro 2.6 teaches new and existing GIS users how to get started solving problems using ArcGIS Pro. Using ArcGIS Pro for these tasks allows you to understand complex data with the leading GIS software that many businesses and organizations use every day.Getting to Know ArcGIS Pro 2.6 introduces the basic tools and capabilities of ArcGIS Pro through practical project workflows that demonstrate best practices for productivity. Explore spatial relationships, building a geodatabase, 3D GIS, project presentation, and more. Learn how to navigate ArcGIS Pro and ArcGIS Online by visualizing, querying, creating, editing, analyzing, and presenting geospatial data in both 2D and 3D environments. Using figures to show each step, Getting to Know ArcGIS Pro 2.6 demystifies complicated process like developing a geoprocessing model, using Python to write a script tool, and the creation of space-time cubes. Cartographic techniques for both web and physical maps are included.Each chapter begins with a prompt using a real-world scenario in a different industry to help you explore how ArcGIS Pro can be applied for operational efficiency, analysis, and problem solving. A summary and glossary terms at the end of every chapter help reinforce the lessons and skills learned.Ideal for students, self-learners, and seasoned professionals looking to learn a new GIS product, Getting to Know ArcGIS Pro 2.6 is a broad textbook and desk reference designed to leave users feeling confident in using ArcGIS Pro on their own.AUDIENCEProfessional and scholarly. Higher education.AUTHOR BIOMichael Law is a cartographer and GIS professional with more than a decade of experience. He was a cartographer for Esri, where he developed cartography for books, edited and tested GIS workbooks, and was the editor of the Esri Map Book. He continues to work with GIS software, writing technical documentation, teaching training courses, and designing and optimizing user interfaces.Amy Collins is a writer and editor who has worked with GIS for over 16 years. She was a technical editor for Esri, where she honed her GIS skills and cultivated an interest in designing effective instructional materials. She continues to develop books on GIS education, among other projects.Pub Date: Print: 10/6/2020 Digital: 8/18/2020 ISBN: Print: 9781589486355 Digital: 9781589486362 Price: Print: $84.99 USD Digital: $84.99 USD Pages: 420 Trim: 7.5 x 9.25 in.Table of ContentsPrefaceChapter 1 Introducing GISExercise 1a: Explore ArcGIS OnlineChapter 2 A first look at ArcGIS Pro Exercise 2a: Learn some basics Exercise 2b: Go beyond the basics Exercise 2c: Experience 3D GISChapter 3 Exploring geospatial relationshipsExercise 3a: Extract part of a dataset Exercise 3b: Incorporate tabular data Exercise 3c: Calculate data statistics Exercise 3d: Connect spatial datasetsChapter 4 Creating and editing spatial data Exercise 4a: Build a geodatabase Exercise 4b: Create features Exercise 4c: Modify featuresChapter 5 Facilitating workflows Exercise 5a: Manage a repeatable workflow using tasks Exercise 5b: Create a geoprocessing model Exercise 5c: Run a Python command and script toolChapter 6 Collaborative mapping Exercise 6a: Prepare a database for data collection Exercise 6b: Prepare a map for data collection Exercise 6c: Collect data using ArcGIS CollectorChapter 7 Geoenabling your projectExercise 7a: Prepare project data Exercise 7b: Geocode location data Exercise 7c: Use geoprocessing tools to analyze vector dataChapter 8 Analyzing spatial and temporal patternsExercise 8a: Create a kernel density map Exercise 8b: Perform a hot spot analysis Exercise 8c: Explore the results in 3D Exercise 8d: Animate the dataChapter 9 Determining suitability Exercise 9a: Prepare project data Exercise 9b: Derive new surfaces Exercise 9c: Create a weighted suitability modelChapter 10 Presenting your project Exercise 10a: Apply detailed symbology Exercise 10b: Label features Exercise 10c: Create a page layout Exercise 10d: Share your projectAppendix Image and data source credits Data license agreement GlossaryGetting to Know ArcGIS Pro 2.6 | Official Trailer | 2020-08-10 | 00:57

  4. a

    USNG Map Book Template for ArcGIS Pro

    • hub.arcgis.com
    • gis-fema.hub.arcgis.com
    Updated May 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2018). USNG Map Book Template for ArcGIS Pro [Dataset]. https://hub.arcgis.com/content/f93ebd6933cb4679a62ce4f71a2a9615
    Explore at:
    Dataset updated
    May 25, 2018
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contents: This is an ArcGIS Pro zip file that you can download and use for creating map books based on United States National Grid (USNG). It contains a geodatabase, layouts, and tasks designed to teach you how to create a basic map book.Version 1.0.0 Uploaded on May 24th and created with ArcGIS Pro 2.1.3 - Please see the README below before getting started!Updated to 1.1.0 on August 20thUpdated to 1.2.0 on September 7thUpdated to 2.0.0 on October 12thUpdate to 2.1.0 on December 29thBack to 1.2.0 due to breaking changes in the templateBack to 1.0.0 due to breaking changes in the template as of June 11th 2019Updated to 2.1.1 on October 8th 2019Audience: GIS Professionals and new users of ArcGIS Pro who support Public Safety agencies with map books. If you are looking for apps that can be used by any public safety professional, see the USNG Lookup Viewer.Purpose: To teach you how to make a map book with critical infrastructure and a basemap, based on USNG. You NEED to follow the steps in the task and not try to take shortcuts the first time you use this task in order to receive the full benefits. Background: This ArcGIS Pro template is meant to be a starting point for your map book projects and is based on best practices by the USNG National Implementation Center (TUNIC) at Delta State University and is hosted by the NAPSG Foundation. This does not replace previous templates created in ArcMap, but is a new experimental approach to making map books. We will continue to refine this template and work with other organizations to make improvements over time. So please send us your feedback admin@publicsafetygis.org and comments below. Instructions: Download the zip file by clicking on the thumbnail or the Download button.Unzip the file to an appropriate location on your computer (C:\Users\YourUsername\Documents\ArcGIS\Projects is a common location for ArcGIS Pro Projects).Open the USNG Map book Project File (APRX).If the Task is not already open by default, navigate to Catalog > Tasks > and open 'Create a US National Grid Map Book' Follow the instructions! This task will have some automated processes and models that run in the background but you should pay close attention to the instructions so you also learn all of the steps. This will allow you to innovate and customize the template for your own use.FAQsWhat is US National Grid? The US National Grid (USNG) is a point and area reference system that provides for actionable location information in a uniform format. Its use helps achieve consistent situational awareness across all levels of government, disciplines, and threats & hazards – regardless of your role in an incident.One of the key resources NAPSG makes available to support emergency responders is a basic USNG situational awareness application. See the NAPSG Foundation and USNG Center websites for more information.What is an ArcGIS Pro Task? A task is a set of preconfigured steps that guide you and others through a workflow or business process. A task can be used to implement a best-practice workflow, improve the efficiency of a workflow, or create a series of interactive tutorial steps. See "What is a Task?" for more information.Do I need to be proficient in ArcGIS Pro to use this template? We feel that this is a good starting point if you have already taken the ArcGIS Pro QuickStart Tutorials. While the task will automate many steps, you will want to get comfortable with the map layouts and other new features in ArcGIS Pro.Is this template free? This resources is provided at no-cost, but also with no guarantees of quality assurance or support at this time. Can't I just use ArcMap? Ok - here you go. USNG 1:24K Map Template for ArcMapKnown Limitations and BugsZoom To: It appears there may be a bug or limitation with automatically zooming the map to the proper extent, so get comfortable with navigation or zoom to feature via the attribute table.FGDC Compliance: We are seeking feedback from experts in the field to make sure that this meets minimum requirements. At this point in time we do not claim to have any official endorsement of standardization. File Size: Highly detailed basemaps can really add up and contribute to your overall file size, especially over a large area / many pages. Consider making a simple "Basemap" of street centerlines and building footprints.We will do the best we can to address limitations and are very open to feedback!

  5. n

    ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project...

    • nbam.ntia.gov
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBAM_Org (2024). ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package [Dataset]. https://nbam.ntia.gov/content/37fa42c6313e4bdb9d8a9c05d2624891
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset authored and provided by
    NBAM_Org
    Description

    The ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package includes all of the layers that are in the NTIA Permitting and Environmental Information Application as well as the APPEIT Tool which will allow users to input a project area and determine what layers from the application overlap with it. An overview of the project package and the APPEIT tool is provided below.

    User instructions on how to use the tool are available here. A video explaining how to use the Project Package is also available here.

    Project Package Overview

    This map package includes all of the layers from the NTIA Permitting and Environmental Information Application. The layers included are all feature services from various Federal and State agencies. The map package was created with ArcGIS Pro 3.4.0. The map package was created to allow users easy access to all feature services including symbology. The map package will allow users to avoid downloading datasets individually and easily incorporate into their own GIS system. The map package includes three maps.

    1. Permitting and Environmental Information Application Layers for GIS Analysis - This map includes all of the map tabs shown in the application, except State Data which is provided in another tab. This map includes feature services that can be used for analysis with other project layers such as a route or project area.

    2. Permitting and Environmental Information Application Layers – For Reference Only - This map includes layers that cannot be used for analysis since they are either imagery or tile layers.

    3. State Data - Reference Only - This map includes all relevant state data that is shown in the application.

    The NTIA Permitting and Environmental Information Application was created to help with your permitting planning and environmental review preparation efforts by providing access to multiple maps from publicly available sources, including federal review, permitting, and resource agencies. The application should be used for informational purposes only and is intended solely to assist users with preliminary identification of areas that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements. Multiple maps are provided in the application which are created from public sources. This application does not have an exhaustive list of everything you need for permitting or environmental review for a project but is an initial starting point to see what might be required.

    APPEIT Tool OverviewThe Department of Commerce’s National Telecommunications and Information Administration (NTIA) is providing the ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) to help federal broadband grant recipients and subgrantees identify permits and environmental factors as they plan routes for their broadband deployments. Identifying permit requirements early, initiating pre-application coordination with permitting agencies, and avoiding environmental impacts help drive successful infrastructure projects. NTIA’s public release of the APPEIT tool supports government-wide efforts to improve permitting and explore how online and digital technologies can promote efficient environmental reviews.

    This Esri ArcGIS Pro tool is included in the map package and was created to support permitting, planning, and environmental review preparation efforts by providing access to data layers from publicly available sources, including federal review, permitting, and resource agencies. An SOP on how to use the tool is available here. For the full list of APPEIT layers, see Appendix Table 1 in the SOP. The tool is comprised of an ArcGIS Pro Project containing a custom ArcGIS Toolbox tool, linked web map shared by the NTIA’s National Broadband Map (NBAM), a report template, and a Tasks item to guide users through using the tool. This ArcGIS Pro project and its contents (maps and data) are consolidated into this (.ppkx) project file.

    To use APPEIT, users will input a project area boundary or project route line in a shapefile or feature class format. The tool will return as a CSV and PDF report that lists any federal layers from the ArcGIS Pro Permitting and Environmental Information Web Map that intersect the project. Users may only input a single project area or line at a time; multiple projects or project segments will need to be screened separately. For project route lines, users are required to specify a buffer distance. The buffer distance that is used for broadband projects should be determined by the area of anticipated impact and should generally not exceed 500 feet. For example, the State of Maryland recommends a 100-foot buffer for broadband permitting. The tool restricts buffers to two miles to ensure relevant results.

    Disclaimer

    This document is intended solely to assist federal broadband grant recipients and subgrantees in better understanding Infrastructure Investment and Jobs Act (IIJA) broadband grant programs and the requirements set forth in the Notice of Funding Opportunity (NOFO) for this program. This document does not and is not intended to supersede, modify, or otherwise alter applicable statutory or regulatory requirements, the terms and conditions of the award, or the specific application requirements set forth in the NOFO. In all cases, statutory and regulatory mandates, the terms and conditions of the award, the requirements set forth in the NOFO, and follow-on policies and guidance, shall prevail over any inconsistencies contained in this document.

    NTIA’s ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) should be used for informational purposes only and is intended solely to assist users with preliminary identification of broadband deployments that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements.

    The tool is not an exhaustive or complete resource and does not and is not intended to substitute for, supersede, modify, or otherwise alter any applicable statutory or regulatory requirements, or the specific application requirements set forth in any NTIA NOFO, Terms and Conditions, or Special Award Condition. In all cases, statutory and regulatory mandates, and the requirements set forth in NTIA grant documents, shall prevail over any inconsistencies contained in these templates.

    The tool relies on publicly available data available on the websites of other federal, state, local, and Tribal agencies, and in some instances, private organizations and research institutions. Layers identified with a double asterisk include information relevant to determining if an “extraordinary circumstance” may warrant more detailed environmental review when a categorical exclusion may otherwise apply. While NTIA continues to make amendments to its websites to comply with Section 508, NTIA cannot ensure Section 508 compliance of federal and non-federal websites or resources users may access from links on NTIA websites.

    All data is presented “as is,” “as available” for informational purposes. NTIA does not warrant the accuracy, adequacy, or completeness of this information and expressly disclaims liability for any errors or omissions.

    Please e-mail NTIAanalytics@ntia.gov with any questions.

  6. Data from: An ArcGIS Pro workflow to extract vegetation indices from aerial...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    tiff, txt
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Wilber; Amy Wilber; Joby M.P. Czarnecki; James D. McCurdy; James D. McCurdy; Joby M.P. Czarnecki (2024). An ArcGIS Pro workflow to extract vegetation indices from aerial imagery of small‐plot turfgrass research [Dataset]. http://doi.org/10.5061/dryad.r4xgxd2dk
    Explore at:
    txt, tiffAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Amy Wilber; Amy Wilber; Joby M.P. Czarnecki; James D. McCurdy; James D. McCurdy; Joby M.P. Czarnecki
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Collection of multispectral imagery from an aerial sensor is a means to obtain plot-level vegetation index (VI) values; however, post-capture image processing and analysis remain a challenge for small-plot researchers. An ArcGIS Pro workflow of two task items was developed with established routines and commands to extract plot-level VI values (Normalized Difference VI, Ratio VI, and Chlorophyll Index-Red Edge) from multispectral aerial imagery of small-plot turfgrass experiments. Users can access and download task item(s) from the ArcGIS Online platform for use in ArcGIS Pro. The workflow standardizes the processing of aerial imagery to ensure repeatability between sampling dates and across site locations. A guided workflow saves time with assigned commands, ultimately allowing users to obtain a table with plot descriptions and index values within a .csv file for statistical analysis. The workflow was used to analyze aerial imagery from a small-plot turfgrass research study evaluating herbicide effects on St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] grow-in. To compare methods, index values were extracted from the same aerial imagery by TurfScout, LLC and were obtained by handheld sensor. Index values from the three methods were correlated with visual percentage cover to determine the sensitivity (i.e., the ability to detect differences) of the different methodologies.

  7. Data from: Python Scripting for ArcGIS Pro

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Python Scripting for ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/python-scripting-for-arcgis-pro
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    Description

    Python Scripting for ArcGIS Pro stars with the fundamentals of Python programming and then dives into how to write useful Python scripts that work with spatial data in ArcGIS Pro. Leam how to execute geoprocessing tools, describe, create and update data, as well as execute a number of specialized tasks. See how to write simple, Custom scripts that will automate your ArcGIS Pro workflows.Some of the key topics you Will learn include:Python fundamentalsSetting up a Python editorAutomating geoprocessing tasksExploring and manipulating spatal and tabular dataWorking With geometriesMap scriptingDebugging ard error handlingHelpful "points to remember," key terms, and review questions are included at the end of each chapter to reinforce your understanding of Python. Corresponding data and exercises are available online.Whether want to learn python or already have some experience, Python Scripting for ArcGlS Pro is comprehensive, hands-on book for learning versatility of Python coding as an approach to solving problems and increasing your productivity in ArcGlS Pro. Follow the step-by-step instruction and common workflow guidance for automating tasks and scripting with Python.Don't forget to also check out Esri Press's other Python title:Advanced Python Scripting for ArcGIS ProAUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPaul A Zandbergen is an associate professor of geography at the University of New Mexico in Albuquerque. His areas of expertise include geographic information science; spatial and statistical analysis techniques using GIS; error and uncertainty in spatial data; GIS applications in criminology, economics, health, and spatial ecology; terrain analysis and modeling; and community-based mapping using GIS and GPS.Pub Date: Print 7/7/2020 Digital: 7/7/2020ISBN: Print 9781589484993 Digital: 9781589485006 Price: Print: $79.99 USD Digital: $79.99 USD Pages: 420 Trim: 8 x 10 in.Table of ContentsPrefaceAcknowledgmentsChapter 1. Introducing Py%onChapter 2. Working with Python editorsChapter 3. Geoprocessing in ArcGIS ProChapter 4. Leaming Python language fundamentalsChapter 5. Geoprocessing using PythonChapter 6. Exploring spatial dataChapter 7. Debugging and error handlingChapter 8. Manipulating spatial and tabular dataChapter 9. Working with geometriesChapter 10. Working with rastersChapter 11. Map scriptingIndexPython Scripting and Advanced Python Scripting for ArcGIS Pro | Official Trailer | 2020-07-12 | 01:04Paul Zandbergen | Interview with Esri Press | 2020-07-10 | 25:37 | Link.

  8. a

    13.4 Preparing to Perform Analysis Using ArcGIS Pro

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.4 Preparing to Perform Analysis Using ArcGIS Pro [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/a2559c1da19b4b71880e7890d52c20cb
    Explore at:
    Dataset updated
    Mar 3, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Your manager has just assigned you to help the Park Service select some new observation points within Dinosaur National Park. These new observation points should meet a set of criteria based on their location. Twenty potential observation points have been identified. So, what is your next step? How can you use ArcGIS Pro to accomplish the analysis efficiently and accurately?After completing this course, you will be able to perform the following tasks:Use the appropriate geoprocessing tool for a given spatial problem.Demonstrate multiple methods for accessing geoprocessing tools.Use ArcGIS Pro to set geoprocessing environments.

  9. a

    GIS Newsletter - November 2019

    • hub.arcgis.com
    • data.virginia.gov
    Updated Nov 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Lynchburg (2019). GIS Newsletter - November 2019 [Dataset]. https://hub.arcgis.com/documents/CityofLynchburg::gis-newsletter-november-2019/about
    Explore at:
    Dataset updated
    Nov 4, 2019
    Dataset authored and provided by
    City of Lynchburg
    Description

    In this edition we highlight DWR's use of ArcGIS Pro Tasks to update CCTV videos to make them easily accessible for employees. We also discuss new aerial imagery coming soon as well as analysis of permits in local historic districts.

  10. o

    Habitat Suitability Analysis of Larval Pacific Lamprey Habitat in the...

    • explore.openaire.eu
    Updated May 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethan Hoffman; Craig Stuart; Lory Salazar-Velasquez; Krista Finlay (2022). Habitat Suitability Analysis of Larval Pacific Lamprey Habitat in the Columbia River Estuary [Dataset]. http://doi.org/10.5281/zenodo.6525886
    Explore at:
    Dataset updated
    May 31, 2022
    Authors
    Ethan Hoffman; Craig Stuart; Lory Salazar-Velasquez; Krista Finlay
    Area covered
    Pacific Ocean, Columbia River, Columbia River Estuary
    Description

    Pacific lamprey (Entosphenus tridentata) are native fish to the Columbia River Basin. Over the past 60 years, anthropogenic disturbances have contributed to a 95% decline of historical population numbers. Member-tribes of the Columbia River Inter-Tribal Fish Commission have acknowledged the importance of Pacific lamprey to the Columbia River ecosystem and expressed concern about the loss of an essential tribal cultural resource. As a result, the Columbia River Inter-Tribal Fish Commission created the Tribal Pacific Lamprey Restoration Plan to halt their decline, re-establish the species, and restore the population to sustainable, harvestable levels throughout their historical range. Limited knowledge about the movement and preferred habitat of larval Pacific lamprey, such as optimal habitat conditions, demographic information, and species resilience, results in challenges to monitor and protect the species. Pacific lamprey is known to use the mainstem Columbia River to migrate between their spawning grounds and the Pacific Ocean. However, dams, levees, and culverts within the Columbia River Estuary and adjacent tributaries have restricted the lamprey's access to spawning grounds and other upstream habitats. These restrictions have prompted conservation and restoration efforts to better understand how Pacific lamprey utilizes the Columbia River Estuary. Here, we address these knowledge gaps in an effort to aid restoration initiatives by completing a Habitat Suitability Analysis to determine where optimal larval Pacific lamprey habitat may exist in the Columbia River Estuary. The project identified the spatial and temporal distribution of suitable habitat for larval Pacific lamprey and generated recommendations to address habitat-related knowledge gaps and further evaluate anthropogenic threats to their recovery. The results of the Habitat Suitability Analysis suggest that habitat conditions in the Columbia River itself are unable to support larval lamprey year-round, but may provide suitable habitat on a seasonal basis due to spatial and temporal limitations. However, we stress that our analyses were necessarily limited to aquatic conditions and that the temperature of the water column used in our analyses may differ from the temperature within fine sediments, where larval lamprey burrow. Our results imply that suitable lamprey habitat is present at times throughout the year in the Columbia River Estuary, and these locations can be used to support habitat restoration and conservation strategies for improving the species' recovery. Anthropogenic threats to the Columbia River continue to alter habitat conditions, including average water temperature, salinity, and sedimentation. Laboratory experiments have provided insight into the potential impacts of changing temperature and salinity on larval Pacific lamprey, where elevated water temperatures can affect their development and elevated salinity levels can result in larval mortality. In addition, anthropogenic disturbances such as dams, levees, and culverts have cut off the Columbia River Estuary's floodplain habitats from the mainstem Columbia River, decreased sedimentation rates, and separated adult lamprey from the floodplains and tributaries that they use to spawn. The presence of these barriers in the region can inhibit the distribution of fine sediments in the river, limiting where larval lamprey burrow and develop. The burrowing behavior of larval lamprey has yet to fully be investigated in the Columbia River Estuary. Limited research may be due to the lack of resources for studying Pacific lamprey's life cycle, habitat, and population dynamics since they are not federally designated as an endangered species, like resident salmonid species. This has further added to the challenge of understanding the species and restoring its population to sustainable numbers. To the best of our knowledge, this project is the first to explore spatial and temporal trends of suitable larval Pacific lamprey habitat conditions in the Columbia River Estuary. The Habitat Suitability Analysis provides technical information about the presence and distribution of suitable conditions to address habitat-related uncertainties. The member-tribes of the Columbia River Inter-Tribal Fish Commission and their collaborators can incorporate the information into current and future Pacific lamprey restoration, conservation, and education programs to enhance general understanding of lamprey populations throughout the Columbia River Basin. Key recommendations are provided to address additional knowledge gaps and prioritize future restoration projects in the Columbia River Basin including the refinement of the Habitat Suitability Analysis, evaluation of barrier effects on Pacific lamprey passage, and assessment of climate change scenarios on larval lamprey habitat. The Habitat Suitability Analysis uses salinity, temperature, and geomorphology data to identify suitable larval Pacific lamprey ...

  11. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  12. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53906
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand for precise geospatial data across diverse sectors. The market, currently estimated at $2.5 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated value of $7.2 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based solutions and the advancements in artificial intelligence (AI) and machine learning (ML) technologies are enhancing the analytical capabilities and accessibility of remote sensing data. Secondly, the growing need for efficient resource management in agriculture, water conservancy, and forestry is driving the demand for sophisticated software capable of processing and interpreting satellite imagery. Furthermore, governmental initiatives promoting the use of geospatial technologies for infrastructure development and environmental monitoring are contributing to market growth. The open-source software segment is expected to witness significant growth due to its cost-effectiveness and flexibility, while the non-open source segment will maintain its market share driven by its advanced features and dedicated support. Geographic regions such as North America and Europe are currently leading the market, driven by robust technological infrastructure and high adoption rates. However, emerging economies in Asia-Pacific are poised for significant growth owing to increasing investments in infrastructure and technological advancements. Despite the positive outlook, the market faces certain challenges. High initial investment costs for both software and hardware can be a barrier to entry for small and medium-sized enterprises (SMEs). Furthermore, the complexity of remote sensing data analysis and the need for skilled professionals to interpret the results can hinder wider adoption. Data security and privacy concerns, especially concerning sensitive geospatial information, also present hurdles for market expansion. Overcoming these challenges through collaborative partnerships, the development of user-friendly interfaces, and robust data security measures will be crucial for driving continued growth in the satellite remote sensing software market.

  13. a

    Visualizing Lidar Data in ArcGIS Pro

    • edu.hub.arcgis.com
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2024). Visualizing Lidar Data in ArcGIS Pro [Dataset]. https://edu.hub.arcgis.com/documents/8c3ee111726044099ab53b7d0b20b2ef
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.Lidar data have become an important source for detailed 3D information for cities as well as forestry, agriculture, archaeology, and many other applications. Topographic lidar surveys, which are conducted by airplane, helicopter or drone, produce data sets that contain millions or billions of points. This can create challenges for storing, visualizing and analyzing the data. In this tutorial you will learn how to create a LAS Dataset and explore the tools available in ArcGIS Pro for visualizing lidar data.To download the tutorial and data folder, click the Open button to the top right. This will download a ZIP file containing the tutorial documents and data files.Software & Solutions Used: ArcGIS Pro Advanced 3.x. Last tested with ArcGIS Pro version 3.3. Time to Complete: 30 - 60 minsFile Size: 337 MBDate Created: August 2020Last Updated: March 2024

  14. f

    Summary statistics for the main variables in our analysis.

    • plos.figshare.com
    xls
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tzu-Cheng Chang; Jia-Hong Tang; Ta-Chien Chan (2025). Summary statistics for the main variables in our analysis. [Dataset]. http://doi.org/10.1371/journal.pone.0325696.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Tzu-Cheng Chang; Jia-Hong Tang; Ta-Chien Chan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary statistics for the main variables in our analysis.

  15. o

    OregonAddress

    • geohub.oregon.gov
    • data.oregon.gov
    • +2more
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). OregonAddress [Dataset]. https://geohub.oregon.gov/content/d52415395ceb4b0faea09b59cec5277f
    Explore at:
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    State of Oregon
    Description

    The new Oregon Address Geocoder is used to find the location coordinates for street addresses in the State of Oregon. This service is:FreePublicUpdated regularlyOutputs location coordinates in Oregon Lambert, feet (SRID 2992)Uses over 2 million address points and 288,000 streets for referenceIt is an ArcGIS multirole locator with two roles:Point Address - Generally more accurate results from rooftop location points. Includes a Subaddress if a unit number is located.Street Address - Less accurate results from an estimated distance along a street centerline address range if a Point Address was not found.Instructions for using the Geocoder via ArcGIS Pro, ArcGIS Online, and REST Services are below:ArcGIS ProWeb ServicesArcGIS Online

  16. f

    Posterior estimates (posterior mean, standard deviation (SD) and 95%...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tzu-Cheng Chang; Jia-Hong Tang; Ta-Chien Chan (2025). Posterior estimates (posterior mean, standard deviation (SD) and 95% credible interval) of covariates for the NTL temporal, spatial and spatiotemporal models. [Dataset]. http://doi.org/10.1371/journal.pone.0325696.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Tzu-Cheng Chang; Jia-Hong Tang; Ta-Chien Chan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Posterior estimates (posterior mean, standard deviation (SD) and 95% credible interval) of covariates for the NTL temporal, spatial and spatiotemporal models.

  17. Data from: Advanced Python Scripting for ArcGIS Pro

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Advanced Python Scripting for ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/advanced-python-scripting-for-arcgis-pro
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Ready for something more complex? An easy-to-follow guide to writing specialized Python scripts for spatial data in ArcGlS Pro.

    Advanced Python Scripting for ArcGlS Pro builds on Python Scripting for ArcGlS Pro (Esri Press, 201 9). Learn how to create a geoprocessing tool out of your script and automate tasks in ArcGlS Pro, how to share your tools with others, as well as master a number of more specialized tasks.Some of the key topics you will learn include:Python toolboxesCreating and sharing script toolsCreating functions and classesManaging Python packages and environmentsArcPy and ArcGlS API for PythonJupyter Notebook, PandasNumPy, MatplotlibMigrating scripts from Python 2 to 3Helpful "points to remember," key terms, and review questions are included at the end of each chapter to reinforce your understanding of Python. Companion data and exercises are available online.Advanced Python Scripting for ArcGlS Pro is perfect for more experienced developers who are lookilngto upgrade their skills.Don't forget to also check out Esri Press's other Python title: Python Scripting for ArcGlS ProAUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPaul A. Zandbergen is an associate professor of geography at the University of New Mexico in Albuquerque. His areas of expertise include geographic information science; spatial and statistical analysis techniques using GIS; error and uncertainty in spatial data; GIS applications in criminology, economics, health, and spatial ecology; terrain analysis and modeling; and community-based mapping using GIS and GPS.Pub Date: print: 7/14/2020 Digital: 7/14/2020ISBN: print: 9781589486188 Digital: 9781589486195Price: print: $69.99 USD Digital: $69.99 USDPages: 300 Trim: 8 x 1 0 in.Table of ContentsPrefaceAcknowledgmentsChapter 1. Creating Python Functions and ClassesChapter 2. Creating Python script toolsChapter 3. Python toolboxesChapter 4. Sharing toolsChapter 5. Managing Python packages and environmentsChapter 6. Essential Python Modules and Packages for GeoprocessingChapter 7. Migrating Scripts from Python 2 to 3 Chapter 8. ArcGlS API for PythonIndexPython Scripting and Advanced Python Scripting for ArcGIS Pro | Official Trailer | 2020-07-12 | 01:04Paul Zandbergen | Interview with Esri Press | 2020-07-10 | 25:37 | Link.

  18. a

    Align Rasters Toolbox for ArcGIS Pro

    • gblel-dlm.opendata.arcgis.com
    Updated Sep 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Nevada, Reno (2023). Align Rasters Toolbox for ArcGIS Pro [Dataset]. https://gblel-dlm.opendata.arcgis.com/content/4f5e9d4e3b974890991d33e7e5251231
    Explore at:
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    University of Nevada, Reno
    Description

    Aligning rasters such that their bounding extent and cell sizes match precisely is a tedious, time consuming, and challenging task. East-to-use tools have been lacking up until now. Many modeling approaches require rasters to be perfectly aligned. For example, a common workflow using R would be to stack rasters and then do subsequent predictive modeling using the stacked rasters as covariates. The Align Rasters Toolbox allows users to quickly and easily align rasters. It has options for working with rasters of differing cell sizes and extents. The Align Rasters without Expansion tool is suitable for situations in which the template raster is smaller than all inputs.

  19. Landsat Arctic Imagery: Short-wave Infrared with DRA

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    Updated Jun 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat Arctic Imagery: Short-wave Infrared with DRA [Dataset]. https://hub.arcgis.com/datasets/fa5e07d865284f41ac5b548e7cec45b6
    Explore at:
    Dataset updated
    Jun 23, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic imagery layer features Landsat 8 and Landsat GLS imagery, rendered on-the-fly as Short-wave Infrared with DRA, for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.To view this imagery layer, you'll want to add it to a map that is using the Polar projection of WGS_1984_EPSG_Alaska_Polar_Stereographic, for example the Arctic Ocean Basemap or the Arctic Imagery basemap. Other polar projections may be used within their useful limits. There is no imagery above 82°30’N due to the orbit of the satellite.

    Geographic CoverageArctic RegionTemporal CoverageThis layer is updated daily with new imagery.Landsat 8 revisits each point on Earth's land surface every 16 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Short-wave Infrared (bands 7,6,4) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Multispectral BandsThe table below lists all available multispectral OLI bands. Short-wave Infrared with DRA consumes bands 7,6,4.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Unlocking Landsat in the Arctic app is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.

    *The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

  20. Overwrite Hosted Feature Services, v2.1.4

    • hub.arcgis.com
    Updated Apr 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Overwrite Hosted Feature Services, v2.1.4 [Dataset]. https://hub.arcgis.com/content/d45f80eb53c748e7aa3d938a46b48836
    Explore at:
    Dataset updated
    Apr 16, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Want to keep the data in your Hosted Feature Service current? Not interested in writing a lot of code?Leverage this Python Script from the command line, Windows Scheduled Task, or from within your own code to automate the replacement of data in an existing Hosted Feature Service. It can also be leveraged by your Notebook environment and automatically managed by the MNCD Tool!See the Sampler Notebook that features the OverwriteFS tool run from Online to update a Feature Service. It leverages MNCD to cache the OverwriteFS script for import to the Notebook. A great way to jump start your Feature Service update workflow! RequirementsPython v3.xArcGIS Python APIStored Connection Profile, defined by Python API 'GIS' module. Also accepts 'pro', to specify using the active ArcGIS Pro connection. Will require ArcGIS Pro and Arcpy!Pre-Existing Hosted Feature ServiceCapabilitiesOverwrite a Feature Service, refreshing the Service Item and DataBackup and reapply Service, Layer, and Item properties - New at v2.0.0Manage Service to Service or Service to Data relationships - New at v2.0.0Repair Lost Service File Item to Service Relationships, re-enabling Service Overwrite - New at v2.0.0'Swap Layer' capability for Views, allowing two Services to support a View, acting as Active and Idle role during Updates - New at v2.0.0Data Conversion capability, able to invoke following a download and before Service update - New at v2.0.0Includes 'Rss2Json' Conversion routine, able to read a RSS or GeoRSS source and generate GeoJson for Service Update - New at v2.0.0Renamed 'Rss2Json' to 'Xml2GeoJSON' for its enhanced capabilities, 'Rss2Json' remains for compatability - Revised at v2.1.0Added 'Json2GeoJSON' Conversion routine, able to read and manipulate Json or GeoJSON data for Service Updates - New at v2.1.0Can update other File item types like PDF, Word, Excel, and so on - New at v2.1.0Supports ArcGIS Python API v2.0 - New at v2.1.2RevisionsSep 29, 2021: Long awaited update to v2.0.0!Sep 30, 2021: v2.0.1, Patch to correct Outcome Status when download or Coversion resulted in no change. Also updated documentation.Oct 7, 2021: v2.0.2, workflow Patch correcting Extent update of Views when Overwriting Service, discovered following recent ArcGIS Online update. Enhancements to 'datetimeUtil' Support script.Nov 30, 2021: v2.1.0, added new 'Json2GeoJSON' Converter, enhanced 'Xml2GeoJSON' Converter, retired 'Rss2Json' Converter, added new Option Switches 'IgnoreAge' and 'UpdateTarget' for source age control and QA/QC workflows, revised Optimization logic and CRC comparison on downloads.Dec 1, 2021: v2.1.1, Only a patch to Conversion routines: Corrected handling of null Z-values in Geometries (discovered immediately following release 2.1.0), improve error trapping while processing rows, and added deprecation message to retired 'Rss2Json' conversion routine.Feb 22, 2022: v2.1.2, Patch to detect and re-apply case-insensitive field indexes. Update to allow Swapping Layers to Service without an associated file item. Added cache refresh following updates. Patch to support Python API 2.0 service 'table' property. Patches to 'Json2GeoJSON' and 'Xml2GeoJSON' converter routines.Sep 5, 2024: v2.1.4, Patch service manager refresh failure issue. Added trace report to Convert execution on exception. Set 'ignore-DataItemCheck' property to True when 'GetTarget' action initiated. Hardened Async job status check. Update 'overwriteFeatureService' to support GeoPackage type and file item type when item.name includes a period, updated retry loop to try one final overwrite after del, fixed error stop issue on failed overwrite attempts. Removed restriction on uploading files larger than 2GB. Restores missing 'itemInfo' file on service File items. Corrected false swap success when view has no layers. Lifted restriction of Overwrite/Swap Layers for OGC. Added 'serviceDescription' to service detail backup. Added 'thumbnail' to item backup/restore logic. Added 'byLayerOrder' parameter to 'swapFeatureViewLayers'. Added 'SwapByOrder' action switch. Patch added to overwriteFeatureService 'status' check. Patch for June 2024 update made to 'managers.overwrite' API script that blocks uploads > 25MB, API v2.3.0.3. Patch 'overwriteFeatureService' to correctly identify overwrite file if service has multiple Service2Data relationships.Includes documentation updates!

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2020). Automating Workflows Using ArcGIS Pro Tasks [Dataset]. https://hub.arcgis.com/documents/e790879743414a749f60f2005db1c5c7

Automating Workflows Using ArcGIS Pro Tasks

Explore at:
Dataset updated
Dec 29, 2020
Dataset authored and provided by
State of Delaware
Description

Learn how to produce a standardized, step-by-step workflow that ArcGIS Pro users of all experience levels can efficiently complete.GoalsUnderstand the benefits of tasks.Design and create tasks.Share tasks.

Search
Clear search
Close search
Google apps
Main menu