56 datasets found
  1. Data from: Python Scripting for ArcGIS Pro

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Python Scripting for ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/python-scripting-for-arcgis-pro
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    Description

    Python Scripting for ArcGIS Pro stars with the fundamentals of Python programming and then dives into how to write useful Python scripts that work with spatial data in ArcGIS Pro. Leam how to execute geoprocessing tools, describe, create and update data, as well as execute a number of specialized tasks. See how to write simple, Custom scripts that will automate your ArcGIS Pro workflows.Some of the key topics you Will learn include:Python fundamentalsSetting up a Python editorAutomating geoprocessing tasksExploring and manipulating spatal and tabular dataWorking With geometriesMap scriptingDebugging ard error handlingHelpful "points to remember," key terms, and review questions are included at the end of each chapter to reinforce your understanding of Python. Corresponding data and exercises are available online.Whether want to learn python or already have some experience, Python Scripting for ArcGlS Pro is comprehensive, hands-on book for learning versatility of Python coding as an approach to solving problems and increasing your productivity in ArcGlS Pro. Follow the step-by-step instruction and common workflow guidance for automating tasks and scripting with Python.Don't forget to also check out Esri Press's other Python title:Advanced Python Scripting for ArcGIS ProAUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPaul A Zandbergen is an associate professor of geography at the University of New Mexico in Albuquerque. His areas of expertise include geographic information science; spatial and statistical analysis techniques using GIS; error and uncertainty in spatial data; GIS applications in criminology, economics, health, and spatial ecology; terrain analysis and modeling; and community-based mapping using GIS and GPS.Pub Date: Print 7/7/2020 Digital: 7/7/2020ISBN: Print 9781589484993 Digital: 9781589485006 Price: Print: $79.99 USD Digital: $79.99 USD Pages: 420 Trim: 8 x 10 in.Table of ContentsPrefaceAcknowledgmentsChapter 1. Introducing Py%onChapter 2. Working with Python editorsChapter 3. Geoprocessing in ArcGIS ProChapter 4. Leaming Python language fundamentalsChapter 5. Geoprocessing using PythonChapter 6. Exploring spatial dataChapter 7. Debugging and error handlingChapter 8. Manipulating spatial and tabular dataChapter 9. Working with geometriesChapter 10. Working with rastersChapter 11. Map scriptingIndexPython Scripting and Advanced Python Scripting for ArcGIS Pro | Official Trailer | 2020-07-12 | 01:04Paul Zandbergen | Interview with Esri Press | 2020-07-10 | 25:37 | Link.

  2. M

    DNR Toolbox for ArcGIS Pro

    • gisdata.mn.gov
    esri_toolbox
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR Toolbox for ArcGIS Pro [Dataset]. https://gisdata.mn.gov/dataset/dnr-pro-toolbox
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The Minnesota DNR Toolbox provides a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR.

    Toolsets included in MNDNR Tools:
    - Analysis Tools
    - Conversion Tools
    - General Tools
    - LiDAR and DEM Tools
    - Sampling Tools

    The application download includes a comprehensive help document, which you can also access separately here: ArcGISPro_MNDNR_Toolbox_Pro_User_Guide.pdf

    These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

  3. a

    13.4 Preparing to Perform Analysis Using ArcGIS Pro

    • training-iowadot.opendata.arcgis.com
    Updated Mar 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.4 Preparing to Perform Analysis Using ArcGIS Pro [Dataset]. https://training-iowadot.opendata.arcgis.com/documents/a2559c1da19b4b71880e7890d52c20cb
    Explore at:
    Dataset updated
    Mar 3, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Your manager has just assigned you to help the Park Service select some new observation points within Dinosaur National Park. These new observation points should meet a set of criteria based on their location. Twenty potential observation points have been identified. So, what is your next step? How can you use ArcGIS Pro to accomplish the analysis efficiently and accurately?After completing this course, you will be able to perform the following tasks:Use the appropriate geoprocessing tool for a given spatial problem.Demonstrate multiple methods for accessing geoprocessing tools.Use ArcGIS Pro to set geoprocessing environments.

  4. Customized HKPD Transformation Geoprocessing Tool

    • opendata.esrichina.hk
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2021). Customized HKPD Transformation Geoprocessing Tool [Dataset]. https://opendata.esrichina.hk/content/0bf07bca54d94d4f95859c941c2b497f
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Description

    The Geoprocessing tool embeds the Web-based Transformation Tool released by Lands Department of HKSAR in ArcGIS and provides an instant extraction of height information of Hong Kong Principal Datum from various coordinate systems/datums. The Transformation Tool from Lands Department uses the conversion methods, parameters and formulas listed in the "Explanatory Notes on Geodetic Datums in Hong Kong" (PDF) and the "Datum Transformation and Transformation Parameters" (The "7-parameters") (PDF) as well as the Geoid Model established by the Hong Kong Polytechnic University. Please refer to this guidelines for using this geoprocessing tool in ArcGIS Pro.(Note: This tool is only applicable in ArcGIS Pro, and for coordinates within Hong Kong territories.)

  5. Getting to Know ArcGIS Pro 2.6

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Getting to Know ArcGIS Pro 2.6 [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/getting-to-know-arcgis-pro-2-6
    Explore at:
    Dataset updated
    Aug 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Continuing the tradition of the best-selling Getting to Know series, Getting to Know ArcGIS Pro 2.6 teaches new and existing GIS users how to get started solving problems using ArcGIS Pro. Using ArcGIS Pro for these tasks allows you to understand complex data with the leading GIS software that many businesses and organizations use every day.Getting to Know ArcGIS Pro 2.6 introduces the basic tools and capabilities of ArcGIS Pro through practical project workflows that demonstrate best practices for productivity. Explore spatial relationships, building a geodatabase, 3D GIS, project presentation, and more. Learn how to navigate ArcGIS Pro and ArcGIS Online by visualizing, querying, creating, editing, analyzing, and presenting geospatial data in both 2D and 3D environments. Using figures to show each step, Getting to Know ArcGIS Pro 2.6 demystifies complicated process like developing a geoprocessing model, using Python to write a script tool, and the creation of space-time cubes. Cartographic techniques for both web and physical maps are included.Each chapter begins with a prompt using a real-world scenario in a different industry to help you explore how ArcGIS Pro can be applied for operational efficiency, analysis, and problem solving. A summary and glossary terms at the end of every chapter help reinforce the lessons and skills learned.Ideal for students, self-learners, and seasoned professionals looking to learn a new GIS product, Getting to Know ArcGIS Pro 2.6 is a broad textbook and desk reference designed to leave users feeling confident in using ArcGIS Pro on their own.AUDIENCEProfessional and scholarly. Higher education.AUTHOR BIOMichael Law is a cartographer and GIS professional with more than a decade of experience. He was a cartographer for Esri, where he developed cartography for books, edited and tested GIS workbooks, and was the editor of the Esri Map Book. He continues to work with GIS software, writing technical documentation, teaching training courses, and designing and optimizing user interfaces.Amy Collins is a writer and editor who has worked with GIS for over 16 years. She was a technical editor for Esri, where she honed her GIS skills and cultivated an interest in designing effective instructional materials. She continues to develop books on GIS education, among other projects.Pub Date: Print: 10/6/2020 Digital: 8/18/2020 ISBN: Print: 9781589486355 Digital: 9781589486362 Price: Print: $84.99 USD Digital: $84.99 USD Pages: 420 Trim: 7.5 x 9.25 in.Table of ContentsPrefaceChapter 1 Introducing GISExercise 1a: Explore ArcGIS OnlineChapter 2 A first look at ArcGIS Pro Exercise 2a: Learn some basics Exercise 2b: Go beyond the basics Exercise 2c: Experience 3D GISChapter 3 Exploring geospatial relationshipsExercise 3a: Extract part of a dataset Exercise 3b: Incorporate tabular data Exercise 3c: Calculate data statistics Exercise 3d: Connect spatial datasetsChapter 4 Creating and editing spatial data Exercise 4a: Build a geodatabase Exercise 4b: Create features Exercise 4c: Modify featuresChapter 5 Facilitating workflows Exercise 5a: Manage a repeatable workflow using tasks Exercise 5b: Create a geoprocessing model Exercise 5c: Run a Python command and script toolChapter 6 Collaborative mapping Exercise 6a: Prepare a database for data collection Exercise 6b: Prepare a map for data collection Exercise 6c: Collect data using ArcGIS CollectorChapter 7 Geoenabling your projectExercise 7a: Prepare project data Exercise 7b: Geocode location data Exercise 7c: Use geoprocessing tools to analyze vector dataChapter 8 Analyzing spatial and temporal patternsExercise 8a: Create a kernel density map Exercise 8b: Perform a hot spot analysis Exercise 8c: Explore the results in 3D Exercise 8d: Animate the dataChapter 9 Determining suitability Exercise 9a: Prepare project data Exercise 9b: Derive new surfaces Exercise 9c: Create a weighted suitability modelChapter 10 Presenting your project Exercise 10a: Apply detailed symbology Exercise 10b: Label features Exercise 10c: Create a page layout Exercise 10d: Share your projectAppendix Image and data source credits Data license agreement GlossaryGetting to Know ArcGIS Pro 2.6 | Official Trailer | 2020-08-10 | 00:57

  6. a

    Full Range Heat Anomalies - USA 2023

    • community-climatesolutions.hub.arcgis.com
    • keep-cool-global-community.hub.arcgis.com
    • +2more
    Updated Apr 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Full Range Heat Anomalies - USA 2023 [Dataset]. https://community-climatesolutions.hub.arcgis.com/datasets/e89a556263e04cb9b0b4638253ca8d10
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  7. c

    USDA Census of Agriculture 2017 - Sales and Equipment

    • resilience.climate.gov
    • ars-geolibrary-usdaars.hub.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Sales and Equipment [Dataset]. https://resilience.climate.gov/datasets/esri::usda-census-of-agriculture-2017-sales-and-equipment
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes farm and ranch sales plus the number and value of machines and trucks owned by operators from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: Farm and Ranch Sales, Machinery and Truck inventory and ValueCoordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Number of Operations - AnimalsSales in US Dollars - AnimalsNumber of Operations - CropsSales in US Dollars - CropsTotal Value in US Dollars - MachineryTractors - InventoryTrucks Including Pickups - InventoryAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  8. c

    USDA Census of Agriculture 2017 - Cotton Production

    • resilience.climate.gov
    • livingatlas-dcdev.opendata.arcgis.com
    • +1more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Cotton Production [Dataset]. https://resilience.climate.gov/maps/esri::usda-census-of-agriculture-2017-cotton-production
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cotton production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cotton ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BalesSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  9. c

    USDA Census of Agriculture 2017 - Cattle Production

    • resilience.climate.gov
    • ars-geolibrary-usdaars.hub.arcgis.com
    • +1more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Cattle Production [Dataset]. https://resilience.climate.gov/datasets/esri::usda-census-of-agriculture-2017-cattle-production
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cattle production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cattle ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Cattle - Operations with SalesCattle - Sales in US DollarsCattle - Sales in HeadDairy - Operations with SalesDairy - Sales in US DollarsAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  10. h

    Full Range Heat Anomalies - USA 2021

    • heat.gov
    • hub.arcgis.com
    Updated Jan 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Full Range Heat Anomalies - USA 2021 [Dataset]. https://www.heat.gov/datasets/ec2cc72c3de04c9aa9fd467f4e2cd378
    Explore at:
    Dataset updated
    Jan 5, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, with patching from summer of 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  11. c

    USDA Census of Agriculture 2017 - Corn Production

    • resilience.climate.gov
    • resilience-and-adaptation-information-portal-nationalclimate.hub.arcgis.com
    • +1more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Corn Production [Dataset]. https://resilience.climate.gov/datasets/esri::usda-census-of-agriculture-2017-corn-production
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes corn production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Corn ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Operations with SalesSales in US DollarsGrain - Area Harvested in AcresGrain - Operations with Area HarvestedGrain - Production in BushelsGrain - Irrigated Area Harvested in AcresGrain - Operations with Irrigated Area HarvestedSilage - Area Harvested in AcresSilage - Operations with Area HarvestedSilage - Production in TonsSilage - Irrigated Area Harvested in AcresSilage - Operations with Area HarvestedTraditional or Indian - Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedTraditional or Indian - Production in PoundsTraditional or Indian - Irrigated Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  12. h

    Heat Severity - USA 2021

    • heat.gov
    • giscommons-countyplanning.opendata.arcgis.com
    • +1more
    Updated Jan 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3
    Explore at:
    Dataset updated
    Jan 5, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  13. USDA Census of Agriculture 2017 - Hay Production

    • ars-geolibrary-usdaars.hub.arcgis.com
    • resilience.climate.gov
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Hay Production [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/datasets/esri::usda-census-of-agriculture-2017-hay-production-
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes hay production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Hay ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedProduction in TonsAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  14. u

    USA Aquifers

    • colorado-river-portal.usgs.gov
    • hub.arcgis.com
    • +1more
    Updated Feb 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Aquifers [Dataset]. https://colorado-river-portal.usgs.gov/datasets/esri::usa-aquifers
    Explore at:
    Dataset updated
    Feb 28, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Aquifers are underground layers of gravel, sand, or permeable rock that contain ground water. This water can be extracted using a well and provides an important source of water in many regions of the world.This layer, produced as part of the Ground Water Atlas of the United States, provides access to the areal extent of the principal aquifers of the United States. In areas where multiple aquifers exist at different depths below the surface only the shallowest aquifer is included.This layer does not display all areas where ground water exists. The U.S. Geologic Survey (USGS) mapped these aquifers by interpreting surface features and aquifers may extend beyond these features. Ground water areas along watercourses and ground water in unconsolidated glacial sand and gravel deposits are not included in this layer. Data on these areas are provided in the layer Aquifers of Alluvial and Glacial Origin from the USGS.Dataset SummaryPhenomenon Mapped: Aquifers of the United StatesCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Hawaii, Puerto Rico, and the U.S. Virgin IslandsVisible Scale: All ScalesSource: Groundwater Atlas of the United StatesPublication Date: October 1, 2003Please note: "This dataset, published in 2003, contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons. The map layer was developed as part of the effort to produce the maps published at 1:2,500,000 in the printed series Ground Water Atlas of the United States. The published maps contain base and cultural features not included in these data. Please note that the maps do not show the entire extent of an aquifer, only its subcrop or outcrop area. Refer to the metadata for a complete description of the files and how they were generated." (Source USGS)What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  15. USDA Census of Agriculture 2017 - Federal Payments

    • ars-geolibrary-usdaars.hub.arcgis.com
    • resilience.climate.gov
    • +1more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USDA Census of Agriculture 2017 - Federal Payments [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/datasets/esri::usda-census-of-agriculture-2017-federal-payments
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes payments made to producers by the Federal government from the 2017 Census of Agriculture at the county level. This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online.Dataset SummaryPhenomenon Mapped: Payments made to producers by the Federal government Coordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Federal Payments - Operations with ReceiptsFederal Payments - Receipts in US DollarsFederal Payments - Receipts in US Dollars per OperationFederal Payments not Including Conservation and Wetland Programs - Operations with ReceiptsFederal Payments not Including Conservation and Wetland Programs - Receipts in US DollarsFederal Payments not Including Conservation and Wetland Programs - Receipts in US Dollars per OperationFederal Payments for Conservation and Wetland Programs - Operations with ReceiptsFederal Payments for Conservation and Wetland Programs - Receipts in US DollarsFederal Payments for Conservation and Wetland Programs - Receipts in US Dollars per OperationConservation and wetland programs include:Conservation Reserve Program (CRP)Wetlands Reserve Program (WRP)Farmable Wetlands Program (FWP)Conservation Reserve Enhancement Program (CREP)Other programs with payments to producers include:2014 Agricultural Act (Farm Bill)Agriculture Risk Coverage (ARC)Price Loss Coverage (PLC)Commodity Credit Corporation (CCC)Loan Deficiency PaymentsDisaster Assistance ProgramsState and local government agricultural program payments and Federal crop insurance payments are not included.Additionally, attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  16. a

    Heat Severity - USA 2023

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    • +3more
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2024). Heat Severity - USA 2023 [Dataset]. https://hub.arcgis.com/datasets/db5bdb0f0c8c4b85b8270ec67448a0b6
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  17. USDA Census of Agriculture 2017 - Rice Production

    • ars-geolibrary-usdaars.hub.arcgis.com
    • resilience.climate.gov
    Updated Dec 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). USDA Census of Agriculture 2017 - Rice Production [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/datasets/esri::usda-census-of-agriculture-2017-rice-production
    Explore at:
    Dataset updated
    Dec 12, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes rice production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Rice ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Operations with SalesOperations with Area HarvestedSales in US DollarsArea Harvested in AcresProduction in HundredweightAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  18. Risk of Tree Mortality Due to Insects and Disease

    • hub.arcgis.com
    Updated Mar 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Risk of Tree Mortality Due to Insects and Disease [Dataset]. https://hub.arcgis.com/datasets/9bca480b4ea8487bb9cf005c3426af1b
    Explore at:
    Dataset updated
    Mar 5, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Insect and Disease Risk map identifies areas with risk of significant tree mortality due to insects and plant diseases. The layer identifies lands in three classes: areas with risk of tree mortality from insects and disease between 2013 and 2027, areas with lower tree mortality risk, and areas that were formerly at risk but are no longer at risk due to disturbance (human or natural) between 2012 and 2018. Areas with risk of tree mortality are defined as places where at least 25% of standing live basal area greater than one inch in diameter will die over a 15-year time frame (2013 to 2027) due to insects and diseases.The National Insect and Disease Risk map, produced by the US Forest Service FHAAST, is part of a nationwide strategic assessment of potential hazard for tree mortality due to major forest insects and diseases. Dataset Summary Phenomenon Mapped: Risk of tree mortality due to insects and diseaseUnits: MetersCell Size: 30 meters in Hawaii and 240 meters in Alaska and the Contiguous USSource Type: DiscretePixel Type: 2-bit unsigned integerData Coordinate System: NAD 1983 Albers (Contiguous US), WGS 1984 Albers (Alaska), Hawaii Albers (Hawaii)Mosaic Projection: North America Albers Equal Area ConicExtent: Alaska, Hawaii, and the Contiguous United States Source: National Insect Disease Risk MapPublication Date: 2018ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the 2018 version of the National Insect Disease Risk Map.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "insects and disease" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "insects and disease" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use raster functions to create your own custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. For example, Zonal Statistics as Table tool can be used to summarize risk of tree mortality across several watersheds, counties, or other areas that you may be interested in such as areas near homes.In ArcGIS Online you can change then layer's symbology in the image display control, set the layer's transparency, and control the visible scale range.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  19. Windows and Doors Extraction

    • sdiinnovation-geoplatform.hub.arcgis.com
    • hub.arcgis.com
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Windows and Doors Extraction [Dataset]. https://sdiinnovation-geoplatform.hub.arcgis.com/datasets/esri::windows-and-doors-extraction
    Explore at:
    Dataset updated
    Nov 9, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This deep learning model is used for extracting windows and doors in textured building data displayed in 3D views. Manually digitizing windows/doors from 3D building data can be a slow process. This model automates the extraction of these objects from a 3D view and can help in speeding up 3D editing and analysis workflows. Using this model, existing building data can be enhanced with additional information on location, size and orientation of windows and doors. The extracted windows and doors can be further used to perform 3D visibility analysis using existing 3D geoprocessing tools in ArcGIS.This model can be useful in many industries and workflows. National Government and state-level law enforcement could use this model in security analysis scenarios. Local governments could use windows and door locations to help with tax assessments with CAMA (computer aided mass appraisal) plus impact-studies for urban planning. Public safety users might be interested in regards to physical or visual access to restricted areas, or the ability to build evacuation plans. The commercial sector, with everyone from real-estate agents to advertisers to office/interior designers, would be able to benefit from knowing where windows and doors are located. Even utilities, especially mobile phone providers, could take advantage of knowing window sizes and positions. To be clear, this model doesn't solve these problems, but it does allow users to extract and collate some of the data they will need to do it.Using the modelThis model is generic and is expected to work well with a variety of building styles and shapes. To use this model, you need to install supported deep learning frameworks packages first. See Install deep learning frameworks for ArcGIS for more information. The model can be used with the Interactive Object Detection tool.A blog on the ArcGIS Pro tool that leverages this model is published on Esri Blogs. We've also published steps on how to retrain this model further using your data.InputThe model is expected to work with any textured building data displayed in 3D views. Example data sources include textured multipatches, 3D object scene layers, and integrated mesh layers. OutputFeature class with polygons representing the detected windows and doors in the input imagery. Model architectureThe model uses the FasterRCNN model architecture implemented using ArcGIS API for Python.Training dataThis model was trained using images from the Open Images Dataset.Sample resultsBelow, are sample results of the windows detected with this model in ArcGIS Pro using the Interactive Object Detection tool, which outputs the detected objects as a symbolized point feature class with size and orientation attributes.

  20. a

    Fergus Cty WUI

    • hub.arcgis.com
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montana Department of Natural Resources & Conservation (2024). Fergus Cty WUI [Dataset]. https://hub.arcgis.com/maps/MTDNRC::fergus-cty-wui
    Explore at:
    Dataset updated
    Mar 26, 2024
    Dataset authored and provided by
    Montana Department of Natural Resources & Conservation
    Area covered
    Description

    This is the 2024 CWPP WUI data for the Fergus County. It was converted to polygon format by Taylor Greenup with USDA Forest Service on December 6, 2024 after meeting with Steve Fanning and Andrew Oestreich from Fergus County with Liz Hertz MT DNRC for discussion. Using the Raster to Polygon ArcPro geoprocessing tool, the Functional WUI raster layer that was provided by the county was converted to polygon for the following class values: Direct Exposure, Indirect Exposure, Limited Exposure, Critical Fireshed and Nonburnable Fireshed. The option to simplify the polygons and create multipart polygons was selected. Once the data were in polygon format, all the values were merged into one multipart polygon effectively leaving one row of data in the attribute table. A new field was added, 'Category', and populated with the text 'Fergus County 2024 CWPP WUI', and 2 non-applicable fields for the raster values were deleted.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Python Scripting for ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/python-scripting-for-arcgis-pro
Organization logo

Data from: Python Scripting for ArcGIS Pro

Related Article
Explore at:
Dataset updated
Aug 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
Description

Python Scripting for ArcGIS Pro stars with the fundamentals of Python programming and then dives into how to write useful Python scripts that work with spatial data in ArcGIS Pro. Leam how to execute geoprocessing tools, describe, create and update data, as well as execute a number of specialized tasks. See how to write simple, Custom scripts that will automate your ArcGIS Pro workflows.Some of the key topics you Will learn include:Python fundamentalsSetting up a Python editorAutomating geoprocessing tasksExploring and manipulating spatal and tabular dataWorking With geometriesMap scriptingDebugging ard error handlingHelpful "points to remember," key terms, and review questions are included at the end of each chapter to reinforce your understanding of Python. Corresponding data and exercises are available online.Whether want to learn python or already have some experience, Python Scripting for ArcGlS Pro is comprehensive, hands-on book for learning versatility of Python coding as an approach to solving problems and increasing your productivity in ArcGlS Pro. Follow the step-by-step instruction and common workflow guidance for automating tasks and scripting with Python.Don't forget to also check out Esri Press's other Python title:Advanced Python Scripting for ArcGIS ProAUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPaul A Zandbergen is an associate professor of geography at the University of New Mexico in Albuquerque. His areas of expertise include geographic information science; spatial and statistical analysis techniques using GIS; error and uncertainty in spatial data; GIS applications in criminology, economics, health, and spatial ecology; terrain analysis and modeling; and community-based mapping using GIS and GPS.Pub Date: Print 7/7/2020 Digital: 7/7/2020ISBN: Print 9781589484993 Digital: 9781589485006 Price: Print: $79.99 USD Digital: $79.99 USD Pages: 420 Trim: 8 x 10 in.Table of ContentsPrefaceAcknowledgmentsChapter 1. Introducing Py%onChapter 2. Working with Python editorsChapter 3. Geoprocessing in ArcGIS ProChapter 4. Leaming Python language fundamentalsChapter 5. Geoprocessing using PythonChapter 6. Exploring spatial dataChapter 7. Debugging and error handlingChapter 8. Manipulating spatial and tabular dataChapter 9. Working with geometriesChapter 10. Working with rastersChapter 11. Map scriptingIndexPython Scripting and Advanced Python Scripting for ArcGIS Pro | Official Trailer | 2020-07-12 | 01:04Paul Zandbergen | Interview with Esri Press | 2020-07-10 | 25:37 | Link.

Search
Clear search
Close search
Google apps
Main menu