CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.
This hands on GIS exercise discusses the creation of thematic maps with ArcView.
Attachment regarding a request by Chatham Development Corporation for a Conditional Use B-1 District located on Parcel No. 80203, located off US 64 E, New Hope Township, on approximately 15.16 acres.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Colonial National Historical Park to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Colonial National Historical Park map was assigned to one of forty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained Colonial National Historical Park in May 2003. The mapping boundary includes lands under a scenic easement at Swanns Point and it excludes the Cheatham Annex, an area that returned to US Navy ownership in February 2004. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment.
Attachment regarding request by The Parks at Meadowview, LLC (Crescent Resources, LLC) for a revision to “The Parks at Meadowview” Planned Unit Development to add approximately 155 acres (Harris tract) to the PUD and to increase the total number of residential units by 139 to a total for the entire PUD of 739.
These data represent a digital form of the geologic map of Cape Cod and the islands.
Attachment regarding request by Chatham Development Corporation to rezone approximately 15.16 acres located on the south side of US 64 E, 0.92 miles west of NC 751, New Hope Township, from RA-40 Residential Agricultural to Conditional Use B-1 Business.
GIS data for ArcInfo and ArcView for the NY Surficial Geology Map of the Finger Lakes. Surficial geology of NYS. The state is tiled into five regions. Each region corresponds with the original map sheet. These datasets replace the older version in which the state was tiled into ten regions. 1:250,000 scale data. UTM Zone 18, NAD27.
GIS data for ArcInfo and ArcView for the NY Surficial Geology Map of the Adirondack. Surficial geology of NYS. The state is tiled into five regions. Each region corresponds with the original map sheet. These datasets replace the older version in which the state was tiled into ten regions. 1:250,000 scale data. UTM Zone 18, NAD27.
This is an exercise on the use of Postal Code Conversion Files (PCCF) with GIS. (Note: Data associated with this exercise is available on the DLI FTP site under folder 1873-299.)
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset contains 4 different scale GEODATA TOPO series, Geoscience Australia topographic datasets. 1M, 2.5M, 5M and 10M with age ranges from 2001 to 2004.
1:1 Million - Global Map Australia 1M 2001 is a digital dataset covering the Australian landmass and island territories, at a 1:1 million scale. Product Specifications -Themes: It consists of eight layers of information: Vector layers - administrative boundaries, drainage, transportation and population centres Raster layers - elevation, vegetation, land use and land cover -Coverage: Australia -Currency: Variable, based on GEODATA TOPO 250K Series 1 -Coordinates: Geographical -Datum: GDA94, AHD -Medium: Free online -Format: -Vector: ArcInfo Export, ESRI Shapefile, MapInfo mid/mif and Vector Product Format (VPF) -Raster: Band Interleaved by Line (BIL)
1:2.5 Million - GEODATA TOPO 2.5M 2003 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 2.5 million general reference map and is suitable for GIS applications. The product consists of the following layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; Spot heights; and waterbodies. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 1:2.5 million scale general reference maps. This data supersedes the TOPO 2.5M 1998 product through the following characteristics: developed according to GEODATA specifications derived from GEODATA TOPO 250K Series 2 data where available. Product Specifications Themes: GEODATA TOPO 2.5M 2003 consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; spot heights; and waterbodies Coverage: Australia Currency: 2003 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online - Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif
1:5 Million - GEODATA TOPO 5M 2004 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 5 million general reference map and is suitable for GIS applications. Offshore and sand ridge layers were sourced from scanning of the original 1:5 million map production material. The remaining nine layers were derived from the GEODATA TOPO 2.5M 2003 dataset. Free online. Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif. Product Specifications: Themes: consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges, spot heights and waterbodies Coverage: Australia Currency: 2004 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online
1:10 Million - The GEODATA TOPO 10M 2002 version of this product has been completely revised, including the source information. The data is derived primarily from GEODATA TOPO 250K Series 1 data. In October 2003, the data was released in double precision coordinates. It provides a fundamental base layer of geographic information on which you can build a wide range of applications and is particularly suited to State-wide and national applications. The data consists of ten layers: built-up areas, contours, drainage, Spot heights, framework, localities, offshore, rail transport, road transport, and waterbodies. Coverage: Australia Currency: 2002 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, Arcview Shapefile and MapInfo mid/mif Medium: Free online
1:1Million - Vector data was produced by generalising Geoscience Australia's GEODATA TOPO 250K Series 1 data and updated using Series 2 data where available in January 2001. Raster data was sourced from USGS and updated using GEODATA 9 Second DEM Series 2, 1:5 million, Vegetation - Present (1988) and National Land and Water Resources data. However, updates have not been subjected to thorough vetting. A more detailed land use classification for Australia is available at www.nlwra.gov.au.
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_48006
1:2.5Million - Data for the Contours, Offshore, and Sand ridge layers was captured from 1:2.5 million scale mapping by scanning stable base photographic film positives of the original map production material. The key source material for Built-up areas, Drainage, Spot heights, Framework, Localities, Rail transport, Road transport and Waterbodies layers was GEODATA TOPO 2.5M 2003
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60804
1:5Million - Offshore and Sand Ridge layers have been derived from 1:5M scale mapping by scanning stable base photographic film positives of the various layers of the original map production material. The remaining layers were sourced from the GEODATA TOPO 2.5M 2003 product.
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_61114
1:10Million - The key source for production of the Builtup Areas, Drainage, Framework, Localities, Rail Transport, Road Transport and Waterbodies layers was the GEODATA TOPO 250K Series 1 product. Some revision of the Builtup Areas, Road Transport, Rail Transport and Waterbodies layers was carried out using the latest available satelite imagery. The primary source for the Spot Heights, Contours and Offshore layers was the GEODATA TOPO 10M Version 1 product. A further element to the production of GEODATA TOPO 10M 2002 has been the datum shift from the Australian Geodetic Datum 1966 (AGD66) to the Geocentric Datum of Australia 1994 (GDA94).
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60803
Geoscience Australia (2001) Geoscience Australia GEODATA TOPO series - 1:1 Million to 1:10 Million scale. Bioregional Assessment Source Dataset. Viewed 09 October 2018, http://data.bioregionalassessments.gov.au/dataset/310c5d07-5a56-4cf7-a5c8-63bdb001cd1a.
https://www.icpsr.umich.edu/web/ICPSR/studies/2929/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2929/terms
This collection grew out of a prototype case tracking and crime mapping application that was developed for the United States Attorney's Office (USAO), Southern District of New York (SDNY). The purpose of creating the application was to move from the traditionally episodic way of handling cases to a comprehensive and strategic method of collecting case information and linking it to specific geographic locations, and collecting information either not handled at all or not handled with sufficient enough detail by SDNY's existing case management system. The result was an end-user application designed to be run largely by SDNY's nontechnical staff. It consisted of two components, a database to capture case tracking information and a mapping component to link case and geographic data. The case tracking data were contained in a Microsoft Access database and the client application contained all of the forms, queries, reports, macros, table links, and code necessary to enter, navigate through, and query the data. The mapping application was developed using Environmental Systems Research Institute's (ESRI) ArcView 3.0a GIS. This collection shows how the user-interface of the database and the mapping component were customized to allow the staff to perform spatial queries without having to be geographic information systems (GIS) experts. Part 1 of this collection contains the Visual Basic script used to customize the user-interface of the Microsoft Access database. Part 2 contains the Avenue script used to customize ArcView to link the data maintained in the server databases, to automate the office's most common queries, and to run simple analyses.
GIS data for ArcInfo and ArcView for the NY Bedrock Geology Map of the Lower Hudson. Bedrock geology of NYS. The state is tiled into five regions. Each region corresponds with the original map sheet. These datasets replace the older version in which the state was tiled into ten regions. 1:250,000 scale data. UTM Zone 18, NAD27.
Attachment regarding request by Thomas Mills for subdivision sketch, preliminary& final design review of "The Thompson Farm, Lot 15-B", 1 lot on approx. 5 acres, off Lashley Rd. (SR 1544), Baldwin Township
GIS data for ArcInfo and ArcView for the NY Bedrock Geology Map of the Niagara. Bedrock geology of NYS. The state is tiled into five regions. Each region corresponds with the original map sheet. These datasets replace the older version in which the state was tiled into ten regions. 1:250,000 scale data. UTM Zone 18, NAD27.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.
Following the vegetation data analysis, the formation-level vegetation map was further edited and refined to develop an association-level vegetation map. Using ArcView 3.2, polygon boundaries were revised onscreen based on the plot data and additional field observations. Each polygon was assigned one of eight vegetation association types based on plot data, field observations, aerial photography signatures, and topographic maps. An aerial photograph interpretation key for the vegetation associations was created. However, several associations could not be distinguished reliably by aerial photography signatures alone. Plot data, field observations, and topographic maps were relied upon in these circumstances to inform the polygon delineation and association name assignments. After the vegetation association map was completed, the thematic accuracy of this map was assessed.
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery and to document the seafloor geology. The combination of these data with previously collected sediment sample data (Robert, 1974; Nittrouer, 1978; and Smith et. al., 1980) has been used to define the extent and lithology of shelf sediments associated with the Columbia River littoral cell. This work is one component of a larger project studying the erosion of the Washington Oregon coasts and is being coordinated by the U.S. Geological Survey and the Washington State Department of Ecology. The reasons for collecting these data are to provide a regional synthesis of the offshore geology for this project and to support a wide variety of management decisions and to provide a basis for further process-oriented investigations.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.
Following the vegetation data analysis, the formation-level vegetation map was further edited and refined to develop an association-level vegetation map. Using ArcView 3.2, polygon boundaries were revised onscreen based on the plot data and additional field observations. Each polygon was assigned one of seven vegetation associations based on plot data, field observations, aerial photography signatures, and topographic maps. An aerial photograph interpretation key for the vegetation associations and Anderson level II categories (modified) is located in Appendix A. After the vegetation association map was completed, the thematic accuracy of this map was assessed.
This is a polygon GIS data layer showing the location and extent of various sidescan, multibeam and swath bathymetry surveys conducted by the USGS, Coastal and Marine Geology Program. Outlines of individual mosaic areas were combined to create one comprehensive layer that could be used to illustrate areas surveyed by USGS/CMGP seafloor mapping programs.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles.
Following the vegetation data analysis, the vegetation cover-type map was edited and refined to develop a preliminary association-level vegetation map. Using ArcView 3.2, polygon boundaries were revised onscreen based on the plot data, field observations, classification analyses, aerial photography signatures, and topographic maps. Each polygon was assigned the name of a preliminary vegetation association based on the five information sources listed above. A mirror stereoscope type F-71 and a Bausch and Lomb zoom stereoscope were used to interpret the aerial photography signatures. The field-collected “true” or “reference” GPS coordinates for the remaining 41 points were compared to the coordinates obtained from the mosaic viewed in ArcMap.
CrimeMapTutorial is a step-by-step tutorial for learning crime mapping using ArcView GIS or MapInfo Professional GIS. It was designed to give users a thorough introduction to most of the knowledge and skills needed to produce daily maps and spatial data queries that uniformed officers and detectives find valuable for crime prevention and enforcement. The tutorials can be used either for self-learning or in a laboratory setting. The geographic information system (GIS) and police data were supplied by the Rochester, New York, Police Department. For each mapping software package, there are three PDF tutorial workbooks and one WinZip archive containing sample data and maps. Workbook 1 was designed for GIS users who want to learn how to use a crime-mapping GIS and how to generate maps and data queries. Workbook 2 was created to assist data preparers in processing police data for use in a GIS. This includes address-matching of police incidents to place them on pin maps and aggregating crime counts by areas (like car beats) to produce area or choropleth maps. Workbook 3 was designed for map makers who want to learn how to construct useful crime maps, given police data that have already been address-matched and preprocessed by data preparers. It is estimated that the three tutorials take approximately six hours to complete in total, including exercises.